

3.0 kV RMS, Single-Channel Digital Isolator

FEATURES

- ▶ High common-mode transient immunity: 100 kV/µs
- ▶ High robustness to radiated and conducted noise
- ▶ Low propagation delay
 - ▶ 13 ns maximum for 5 V operation
 - ▶ 15 ns maximum for 1.8 V operation
- ▶ 150 Mbps maximum data rate
- Safety and regulatory approvals
 - ▶ UL 1577
 - \triangleright V_{ISO} = 3000 V_{RMS} for 1 minute
 - ▶ IEC / EN / CSA 60950-1
 - ▶ IEC / CSA 60601-1
 - ▶ IEC / CSA 61010-1
 - ▶ DIN EN IEC 60747-17 (VDE 0884-17)
 - \triangleright V_{IORM} = 565 V_{PEAK}
- Backward compatibility
 - ▶ Pin compatible with the ADuM1100
- ▶ Low dynamic power consumption
- ▶ 1.8 V to 5 V level translation
- ▶ High temperature operation: 125°C
- ▶ Fail-safe high or low options
- ▶ 8-lead, RoHS-compliant, SOIC package

APPLICATIONS

- ▶ General-purpose single-channel isolation
- Industrial field bus isolation

GENERAL DESCRIPTION

The ADuM110N¹ is a single-channel digital isolator based on Analog Devices, Inc., iCoupler® technology. Combining high speed, complementary metal-oxide semiconductor (CMOS) and monolithic air core transformer technology, this isolation component provides outstanding performance characteristics, superior to alternatives such as optocoupler devices and other integrated couplers. The maximum propagation delay is 13 ns with a pulse width distortion of less than 3 ns at 5 V operation.

The ADuM110N supports data rates as high as 150 Mbps with a withstand voltage rating of 3.0 kV rms (see the Ordering Guide). The device operates with the supply voltage on either side ranging from 1.8 V to 5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier.

Unlike other optocoupler alternatives, dc correctness is ensured in the absence of input logic transitions. Two different fail-safe options are available, in which the outputs transition to a pre-determined state when the input power supply is not applied or the inputs are disabled. The ADuM110N is pin compatible with the ADuM1100.

FUNCTIONAL BLOCK DIAGRAM

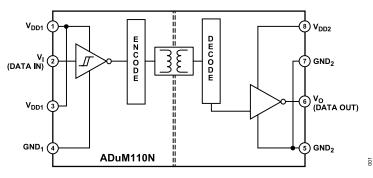


Figure 1.

Rev. C

¹ Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.

TABLE OF CONTENTS

Features1	ESD Caution	10
Applications1	Maximum Continuous Working Voltage	
General Description1	Truth Table	
Functional Block Diagram1	Pin Configuration and Function Descriptions	
Specifications3	Typical Performance Characteristics	
Electrical Characteristics—5 V Operation 3	Applications Information	
Electrical Characteristics—3.3 V Operation 4	Overview	
Electrical Characteristics—2.5 V Operation 5	Printed Circuit Board (PCB) Layout	13
Electrical Characteristics—1.8 V Operation 6	Propagation Delay Related Parameters	
Insulation and Safety Related Specifications7	Jitter Measurement	
Package Characteristics8	Insulation Lifetime	14
Regulatory Information8	Outline Dimensions	16
DIN EN IEC 60747-17 (VDE 0884-17)	Ordering Guide	16
Insulation Characteristics8	Number of Inputs, Withstand Voltage	
Recommended Operating Conditions9	Rating, and Fail-Safe Output State Option	s16
Absolute Maximum Ratings10		
REVISION HISTORY		
10/2024—Rev. B to Rev. C		
Changes to Features Section		1
Changes to Table 9		7
Changes to Regulatory Information Section and Table		8
Changed DIN VDE V 0884-11:2017-01 Insulation Char		
(VDE 0884-17) Insulation Characteristics Section		
Changes to Table 12		
Changes to Figure 2 Caption		
Added Number of Inputs, Withstand Voltage Rating, ar	nd Fail-Safe Output State Options	16

analog.com Rev. C | 2 of 16

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DD2} = 5$ V. Minimum/maximum specifications apply over the entire recommended operation range of 4.5 V \leq V_{DD1} \leq 5.5 V, 4.5 V \leq V_{DD2} \leq 5.5 V, and $-40^{\circ}C \leq$ $T_A \leq$ +125°C, unless otherwise noted. Switching specifications are tested with $C_L = 15$ pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.

Table 1.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
Pulse Width	PW	6.6			ns	Within pulse width distortion (PWD) limit
Data Rate		150			Mbps	Within PWD limit
Propagation Delay	t _{PHL} , t _{PLH}	4.8	7.2	13	ns	50% input to 50% output
Pulse Width Distortion	PWD		0.5	3	ns	t _{PLH} - t _{PHL}
Change vs. Temperature			1.5		ps/°C	
Propagation Delay Skew	t _{PSK}			6.0	ns	Between any two units at the same temperature, voltage, and load
Jitter			380		ps p-p	See the Jitter Measurement section
			55		ps rms	See the Jitter Measurement section
DC SPECIFICATIONS						
Input Threshold						
Logic High	V _{IH}	0.7 × V _{DD1}			V	
Logic Low	V _{IL}			$0.3 \times V_{DD1}$	V	
Output Voltage						
Logic High	V _{OH}	V _{DD2} - 0.1	V_{DD2}		V	Output current (I_O) = -20 μ A, input voltage (V_I) = V_{IH}
		V _{DD2} - 0.4	$V_{DD2} - 0.2$		V	$I_O = -4 \text{ mA}, V_I = V_{IH}$
Logic Low	V _{OL}		0.0	0.1	V	$I_{O} = 20 \mu A, V_{I} = V_{IL}$
			0.2	0.4	V	$I_O = 4 \text{ mA}, V_I = V_{IL}$
Input Current per Channel Quiescent Supply Current	I	-10	+0.01	+10	μΑ	$0 \text{ V} \leq \text{V}_1 \leq \text{V}_{\text{DD1}}$
,	I _{DD1 (Q)}		0.9	1.4	mA	$V_1 = 0 (N0), 1 (N1)^1$
	I _{DD2 (Q)}		1.0	1.3	mA	$V_1 = 0 (N0), 1 (N1)^1$
	I _{DD1 (Q)}		3.6	6.0	mA	$V_1 = 1 (N0), 0 (N1)^1$
	I _{DD2 (Q)}		1.0	1.4	mA	$V_1 = 1 (N0), 0 (N1)^1$
Dynamic Supply Current	BB2 (Q)					
Dynamic Output	I _{DDI (D)}		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Dynamic Input	I _{DDO (D)}		0.02		mA/Mbps	Inputs switching, 50% duty cycle
Undervoltage Lockout	UVLO					
Positive V _{DDx} Threshold	V _{DDxUV+}		1.6		V	
Negative V _{DDx} Threshold	V _{DDxUV} -		1.5		V	
V _{DDx} Hysteresis	V _{DDxUVH}		0.1		V	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F		2.5		ns	10% to 90%
Common-Mode Transient Immunity ²	CM _H	75	100		kV/μs	$V_I = V_{DD1}$, $V_{CM} = 1000$ V, transient magnitude = 800 V
	CM _L	75	100		kV/µs	$V_{\rm I}$ = 0 V, $V_{\rm CM}$ = 1000 V, transient magnitude = 800 V

¹ N0 indicates the ADuM110N0 models and N1 indicates the ADuM110N1 models. See the Ordering Guide section.

analog.com Rev. C | 3 of 16

SPECIFICATIONS

² |CM_H| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (V_O) > 0.8 V_{DD2}. |CM_L| is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O > 0.8 V. The common-mode voltage slew rates apply to both the rising and falling common-mode voltage edges.

Table 2. Total Supply Current vs. Data Throughput—5 V Operation

			1 Mbps		25 Mbps			100 Mbps			_
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SUPPLY CURRENT											
Supply Current Side 1	I _{DD1}		2.2	3.7		2.5	3.9		3.6	4.9	mA
Supply Current Side 2	I _{DD2}		1.1	1.6		1.6	2.3		3.1	4.6	mA

ELECTRICAL CHARACTERISTICS—3.3 V OPERATION

All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DD2} = 3.3$ V. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \text{ V} \le V_{DD1} \le 3.6 \text{ V}$, $3.0 \text{ V} \le V_{DD2} \le 3.6 \text{ V}$, and $-40^{\circ}C \le T_A \le +125^{\circ}C$, unless otherwise noted. Switching specifications are tested with $C_L = 15 \text{ pF}$ and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.

Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
Pulse Width	PW	6.6			ns	Within PWD limit
Data Rate		150			Mbps	Within PWD limit
Propagation Delay	t _{PHL} , t _{PLH}	4.8	6.8	14	ns	50% input to 50% output
Pulse Width Distortion	PWD		0.7	3	ns	t _{PLH} - t _{PHL}
Change vs. Temperature			1.5		ps/°C	
Propagation Delay Skew	t _{PSK}			7.0	ns	Between any two units at the same temperature, voltage, and load
Jitter			290		ps p-p	See the Jitter Measurement section
			45		ps rms	See the Jitter Measurement section
DC SPECIFICATIONS						
Input Threshold						
Logic High	V _{IH}	0.7 × V _{DD1}			V	
Logic Low	V _{IL}			$0.3 \times V_{DD1}$	V	
Output Voltage						
Logic High	V _{OH}	V _{DD2} - 0.1	V_{DD2}		V	$I_{O} = -20 \mu A, V_{I} = V_{IH}$
		V _{DD2} - 0.4	V _{DD2} - 0.2		V	$I_O = -2 \text{ mA}, V_I = V_{IH}$
Logic Low	V _{OL}		0.0	0.1	V	$I_{O} = 20 \mu A, V_{I} = V_{IL}$
			0.2	0.4	V	$I_O = 2 \text{ mA}, V_I = V_{IL}$
Input Current per Channel	l _l	-10	+0.01	+10	μA	$0 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{DD1}}$
Quiescent Supply Current						
	I _{DD1 (Q)}		8.0	1.3	mA	$V_1 = 0 (N0), 1 (N1)^1$
	I _{DD2 (Q)}		0.9	1.4	mA	$V_1 = 0 (N0), 1 (N1)^1$
	I _{DD1 (Q)}		3.6	5.8	mA	$V_1 = 1 (N0), 0 (N1)^1$
	I _{DD2 (Q)}		0.9	1.4	mA	$V_1 = 1 (N0), 0 (N1)^1$
Dynamic Supply Current						
Dynamic Input	I _{DDI (D)}		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Dynamic Output	I _{DDO (D)}		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Undervoltage Lockout	UVLO					
Positive V _{DDx} Threshold	V_{DDxUV+}		1.6		V	
Negative V _{DDx} Threshold	V _{DDxUV} -		1.5		V	
V _{DDx} Hysteresis	V_{DDxUVH}		0.1		V	

analog.com Rev. C | 4 of 16

SPECIFICATIONS

Table 3. (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F		2.5		ns	10% to 90%
Common-Mode Transient Immunity ²	CM _H	75	100		kV/μs	V _I = V _{DD1} , V _{CM} = 1000 V, transient magnitude = 800 V
	CM _L	75	100		kV/μs	$V_{\rm I}$ = 0 V, $V_{\rm CM}$ = 1000 V, transient magnitude = 800 V

¹ N0 indicates the ADuM110N0 models and N1 indicates the ADuM110N1 models. See the Ordering Guide section.

Table 4. Total Supply Current vs. Data Throughput—3.3 V Operation

			1 Mbps			25 Mbps			100 Mbps			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
SUPPLY CURRENT												
Supply Current Side 1	I _{DD1}		2.2	3.5		2.4	3.6		3.2	4.6	mA	
Supply Current Side 2	I _{DD2}		0.9	1.5		1.4	2.0		2.8	4.3	mA	

ELECTRICAL CHARACTERISTICS—2.5 V OPERATION

All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DD2} = 2.5$ V. Minimum/maximum specifications apply over the entire recommended operation range: $2.25 \text{ V} \le V_{DD1} \le 2.75 \text{ V}$, $2.25 \text{ V} \le V_{DD2} \le 2.75 \text{ V}$, $-40^{\circ}C \le T_A \le +125^{\circ}C$, unless otherwise noted. Switching specifications are tested with $C_L = 15 \text{ pF}$ and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.

Table 5.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
Pulse Width	PW	6.6			ns	Within PWD limit
Data Rate		150			Mbps	Within PWD limit
Propagation Delay	t _{PHL} , t _{PLH}	5.0	7.0	14	ns	50% input to 50% output
Pulse Width Distortion	PWD		0.7	3	ns	t _{PLH} - t _{PHL}
Change vs. Temperature			1.5		ps/°C	
Propagation Delay Skew	t _{PSK}			7.0	ns	Between any two units at the same temperature, voltage, load
Jitter			320		ps p-p	See the Jitter Measurement section
			65		ps rms	See the Jitter Measurement section
DC SPECIFICATIONS						
Input Threshold						
Logic High	V _{IH}	0.7 × V _{DD1}			V	
Logic Low	V _{IL}			$0.3 \times V_{DD1}$	V	
Output Voltage						
Logic High	V _{OH}	V _{DD2} - 0.1	V_{DD2}		V	$I_{O} = -20 \mu A, V_{I} = V_{IH}$
		V _{DD2} - 0.4	$V_{DD2} - 0.2$		V	$I_O = -2 \text{ mA}, V_I = V_{IH}$
Logic Low	V _{OL}		0.0	0.1	V	$I_{O} = 20 \mu A, V_{I} = V_{IL}$
			0.2	0.4	V	$I_O = 2 \text{ mA}, V_I = V_{IL}$
Input Current per Channel	l _l	-10	+0.01	+10	μA	$0 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{DD1}}$
Quiescent Supply Current						
	I _{DD1 (Q)}		0.8	1.1	mA	$V_1 = 0 (N0), 1 (N1)^1$
	I _{DD2 (Q)}		0.9	1.2	mA	$V_1 = 0 (N0), 1 (N1)^1$
	I _{DD1 (Q)}		3.5	5.6	mA	$V_1 = 1 (N0), 0 (N1)^1$

analog.com Rev. C | 5 of 16

² |CM_H| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (V_O) > 0.8 V_{DD2}. |CM_L| is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

SPECIFICATIONS

Table 5. (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
	I _{DD2 (Q)}		1.0	1.2	mA	V _I = 1 (N0), 0 (N1) ¹
Dynamic Supply Current						
Dynamic Input	I _{DDI (D)}		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Dynamic Output	I _{DDO (D)}		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Undervoltage Lockout						
Positive V _{DDx} Threshold	V _{DDxUV+}		1.6		V	
Negative V _{DDx} Threshold	V _{DDxUV} -		1.5		V	
V _{DDx} Hysteresis	V_{DDxUVH}		0.1		V	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F		2.5		ns	10% to 90%
Common-Mode Transient Immunity ²	CM _H	75	100		kV/µs	$V_I = V_{DD1}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
	CM _L	75	100		kV/μs	$V_I = 0 \text{ V}, V_{CM} = 1000 \text{ V}, \text{ transient magnitude}$ = 800 V

¹ N0 indicates the ADuM110N0 models and N1 indicates the ADuM110N1 models. See the Ordering Guide section.

Table 6. Total Supply Current vs. Data Throughput—2.5 V Operation

			1 Mbps			25 Mbps			100 Mbps		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SUPPLY CURRENT											
Supply Current Side 1	I _{DD1}		2.2	3.4		2.4	3.6		3.2	4.3	mA
Supply Current Side 2	I _{DD2}		0.9	1.4		1.3	1.8		2.3	3.5	mA

ELECTRICAL CHARACTERISTICS—1.8 V OPERATION

All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DD2} = 1.8 \text{ V}$. Minimum/maximum specifications apply over the entire recommended operation range: $1.7 \text{ V} \le V_{DD1} \le 1.9 \text{ V}$, $1.7 \text{ V} \le V_{DD2} \le 1.9 \text{ V}$, and $-40^{\circ}C \le T_A \le +125^{\circ}C$, unless otherwise noted. Switching specifications are tested with $C_L = 15 \text{ pF}$ and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.

Table 7.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
Pulse Width	PW	6.6			ns	Within PWD limit
Data Rate		150			Mbps	Within PWD limit
Propagation Delay	t _{PHL} , t _{PLH}	5.8	8.7	15	ns	50% input to 50% output
Pulse Width Distortion	PWD		0.7	3	ns	t _{PLH} - t _{PHL}
Change vs. Temperature			1.5		ps/°C	
Propagation Delay Skew	t _{PSK}			7.0	ns	Between any two units at the same temperature, voltage, and load
Jitter			630		ps p-p	See the Jitter Measurement section
			190		ps rms	See the Jitter Measurement section
DC SPECIFICATIONS						
Input Threshold						
Logic High	V _{IH}	0.7 × V _{DD1}			V	
Logic Low	V_{IL}			$0.3 \times V_{DD1}$	V	

analog.com Rev. C | 6 of 16

 $^{^2}$ $|CM_H|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output $(V_O) > 0.8 \text{ V}_{DD2}$. $|CM_L|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_O > 0.8 \text{ V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

SPECIFICATIONS

Table 7. (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Output Voltage						
Logic High	V _{OH}	V _{DD2} - 0.1	V_{DD2}		V	$I_0 = -20 \mu A, V_1 = V_{1H}$
		V _{DD2} - 0.4	V _{DD2} - 0.2		V	$I_O = -2 \text{ mA}, V_I = V_{IH}$
Logic Low	V _{OL}		0.0	0.1	V	$I_{O} = 20 \mu A, V_{I} = V_{IL}$
			0.2	0.4	V	$I_O = 2 \text{ mA}, V_I = V_{IL}$
Input Current per Channel	l _l	-10	+0.01	+10	μA	$0 \text{ V} \leq \text{V}_1 \leq \text{V}_{DD1}$
Quiescent Supply Current						
	I _{DD1 (Q)}		0.7	1.1	mA	$V_1 = 0 (N0), 1 (N1)^1$
	I _{DD2 (Q)}		0.9	1.2	mA	$V_1 = 0 (N0), 1 (N1)^1$
	I _{DD1 (Q)}		3.4	5.4	mA	$V_1 = 1 (N0), 0 (N1)^1$
	I _{DD2 (Q)}		0.9	1.2	mA	$V_1 = 1 (N0), 0 (N1)^1$
Dynamic Supply Current						
Dynamic Input	I _{DDI (D)}		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Dynamic Output	I _{DDO (D)}		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Undervoltage Lockout	UVLO					
Positive V _{DDx} Threshold	V _{DDxUV+}		1.6		V	
Negative V _{DDx} Threshold	V _{DDxUV} -		1.5		V	
V _{DDx} Hysteresis	V _{DDxUVH}		0.1		V	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F		2.5		ns	10% to 90%
Common-Mode Transient Immunity ²	CM _H	75	100		kV/µs	$V_1 = V_{DD1}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
	CM _L	75	100		kV/µs	V ₁ = 0 V, V _{CM} = 1000 V, transient magnitude : 800 V

¹ N0 indicates the ADuM110N0 models and N1 indicates the ADuM110N1 models. See the Ordering Guide section.

Table 8. Total Supply Current vs. Data Throughput—1.8 V Operation

			1 Mbps			25 Mbps				100 Mbps		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
SUPPLY CURRENT												
Supply Current Side 1	I _{DD1}		2.1	3.1		2.3	3.4		3.0	4.2	mA	
Supply Current Side 2	I _{DD2}		0.9	1.2		1.2	1.6		2.2	3.2	mA	

INSULATION AND SAFETY RELATED SPECIFICATIONS

For additional information, see www.analog.com/icouplersafety.

Table 9.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage		3000	V _{RMS}	1-minute duration
Minimum External Air Gap (Clearance) ^{1, 2}	L (101)	4.0	mm min	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage) ¹	L (102)	4.0	mm min	Measured from input terminals to output terminals, shortest distance path along body
Minimum Clearance in the Plane of the Printed Circuit Board (PCB Clearance)	L (PCB)	4.5	mm min	Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane
Minimum Internal Gap (Internal Clearance)		29	μm	Insulation distance through insulation

analog.com Rev. C | 7 of 16

 $^{^2}$ $|CM_H|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output $(V_O) > 0.8 \ V_{DD2}$. $|CM_L|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_O > 0.8 \ V$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

SPECIFICATIONS

Table 9. (Continued)

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Tracking Resistance (Comparative Tracking Index) ³	CTI	>400	V	DIN IEC 112/VDE 0303 Part 1
Material Group		II		Material Group (DIN VDE 0110, 1/89, Table 1)

¹ In accordance with IEC 60950-1 / IEC 60601-1 guidelines for the measurement of creepage and clearance distances for a pollution degree of 2 and altitudes ≤2000 m.

PACKAGE CHARACTERISTICS

Table 10.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Resistance (Input to Output) ¹	R _{I-O}		10 ¹³		Ω	
Capacitance (Input to Output) ¹	C _{I-O}		2		pF	f = 1 MHz
Input Capacitance ²	Cı		4.0		pF	
IC Junction to Ambient Thermal Resistance	θ_{JA}		80		°C/W	Thermocouple located at center of package underside

¹ The ADuM110N is considered a 2-terminal device: Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together.

REGULATORY INFORMATION

The ADuM110N certification approvals are listed in Table 11. See Table 15 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 11.

UL	CSA	VDE	CQC
UL 1577 ¹	IEC / EN / CSA 60950-1 Basic insulation, 400 $V_{\rm RMS}$ Reinforced insulation, 200 $V_{\rm RMS}$	DIN EN IEC 60747-17 (VDE 0884-17) ²	CQC GB4943.1
Single Protection, 3000 V _{RMS}	IEC / CSA 60601-1 Basic insulation (1 MOPP), 250 V_{RMS} IEC / CSA 61010-1 Basic insulation, 300 V_{RMS} , overvoltage category III Basic insulation, 150 V_{RMS} , overvoltage category IV Reinforced insulation, 150 V_{RMS} , overvoltage category III	Reinforced insulation, 565 V _{PEAK}	Basic insulation, 400 V _{RMS}
File E214100	File No. 205078	Certificate No. 40051926	Certificate No. CQC18001192422

In accordance with UL 1577, each ADuM110N is proof tested by applying an insulation test voltage ≥ 3600 V_{RMS} for 1 sec.

DIN EN IEC 60747-17 (VDE 0884-17) INSULATION CHARACTERISTICS

This isolator is suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN EN IEC 60747-17 (VDE 0884-17) approval.

Table 12.

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage ≤ 150 V _{RMS}			I to IV	
For Rated Mains Voltage ≤ 300 V _{RMS}			I to III	

analog.com Rev. C | 8 of 16

² Consideration must be given to pad layout to ensure the minimum required distance for clearance is maintained.

³ CTI rating for the ADuM110N is >400 V and a Material Group II isolation group.

² Input capacitance is from any input data pin to ground.

In accordance with DIN EN IEC 60747-17 (VDE 0884-17), each ADuM110N is proof tested by applying an insulation test voltage ≥ 1059 V_{PEAK} for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN EN IEC 60747-17 (VDE 0884-17) approval.

SPECIFICATIONS

Table 12. (Continued)

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
For Rated Mains Voltage ≤ 400 V _{RMS}			I to III	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Repetitive Isolation Voltage		V _{IORM}	565	V _{PEAK}
Maximum Working Insulation Voltage		V _{IOWM}	400	V _{RMS}
Input to Output Test Voltage, Method B1	$V_{IORM} \times 1.875 = V_{pd (m)}$, 100% production test, $t_{ini} = t_m = 1$ sec, partial discharge < 5 pC	V _{pd (m)}	1059	V_{PEAK}
Input to Output Test Voltage, Method A				
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.6 = V_{pd (m)}, t_{ini} = 60 \text{ sec}, t_m = 10 \text{ sec}, partial discharge < 5 pC}$	V _{pd (m)}	904	V_{PEAK}
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC		678	V_{PEAK}
Maximum Transient Isolation Voltage		V _{IOTM}	4200	V _{PEAK}
Maximum Impulse Voltage	Tested in air, 1.2 µs/50 µs waveform per IEC 61000-4-5	V _{IMP}	4200	V _{PEAK}
Maximum Surge Isolation Voltage	Tested in oil, 1.2 μ s/50 μ s waveform per IEC 61000-4-5, $V_{TEST} = V_{IOSM} \times 1.3 \text{ OR} \ge 10 \text{ kV}$	V _{IOSM}	6250	V_{PEAK}
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 2)			
Maximum Junction Temperature		T _S	150	°C
Total Power Dissipation at 25°C		PS	1.56	W
Insulation Resistance at T _S	V _{IO} = 500 V	R _S	>10 ⁹	Ω

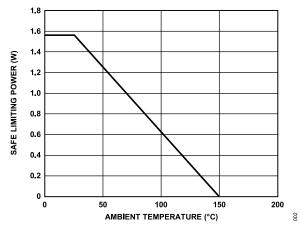


Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per DIN EN IEC 60747-17 (VDE 0884-17)

RECOMMENDED OPERATING CONDITIONS

Table 13.

Parameter	Symbol	Rating
Operating Temperature	T _A	-40°C to +125°C
Supply Voltages		
V_{DD1}		1.7 V to 5.5 V
V_{DD2}		1.7 V to 5.5 V
Input Signal Rise and Fall Times		1.0 ms

analog.com Rev. C | 9 of 16

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 14.

Parameter	Rating
Storage Temperature (T _{ST}) Range	-65°C to +150°C
Ambient Operating Temperature(T _A) Range	-40°C to +125°C
Supply Voltages	
V _{DD1} to GND ₁	-0.5 V to +7.0 V
V _{DD2} to GND ₂	-0.5 V to +7.0 V
Input Voltages (V _I)	$-0.5 \text{ V to V}_{\text{DDI}}^{1} + 0.5 \text{ V}$
Output Voltages (V _O)	$-0.5 \text{ V to V}_{DDO}^2 + 0.5 \text{ V}$
Average Output Current per Pin ³	
Side 2 Output Current (I _{O2})	-10 mA to +10 mA
Common-Mode Transients ⁴	−150 kV/µs to +150 kV/µs

¹ V_{DDI} is the input side supply voltage.

Refers to the common-mode transients across the insulation barrier. Common-mode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

MAXIMUM CONTINUOUS WORKING VOLTAGE

Table 15. Maximum Continuous Working Voltage¹

Parameter	Rating	Constraint
AC Voltage		Lifetime limited by package creepage maximum approved working voltage per IEC 60664-1
Bipolar Waveform		
Basic Insulation	789 V peak	
Reinforced Insulation	403 V peak	
Unipolar Waveform		
Basic Insulation	909 V peak	
Reinforced Insulation	469 V peak	
DC Voltage		Lifetime limited by package creepage maximum approved working voltage per IEC 60664-1
Basic Insulation	558 V peak	
Reinforced Insulation	285 V peak	

¹ Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

TRUTH TABLE

Table 16. Truth Table (Positive Logic)

V _I Input ¹	V _{DDI} State	V _{DD2} State	Default Low (N0), ² V _O Output ¹	Default High (N1), ² V _O Output ¹	Test Conditions/Comments
L	Powered	Powered	L	L	Normal operation
Н	Powered	Powered	Н	Н	Normal operation
X^3	Unpowered	Powered	L	Н	Fail-safe output
X ³	Powered	Unpowered	Indeterminate	Indeterminate	

¹ H means high, L means low, and X means don't care.

analog.com Rev. C | 10 of 16

² V_{DDO} is the output side supply voltage.

³ See Figure 2 for the maximum rated current values for various temperatures.

² N0 indicates the ADuM110N0 models and N1 indicates the ADuM110N1 models. See the Ordering Guide section.

³ The input pin (VI) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

Table 17. Pin Function Descriptions

Pin No.	Mnemonic	Description ¹
1	V _{DD1}	Supply Voltage for Isolator Side 1.
2	$ V_{l} $	Logic Input.
3	V_{DD1}	Supply Voltage for Isolator Side 1.
4	GND ₁	Ground 1. Ground reference for Isolator Side 1.
5	GND ₂	Ground 2. Ground reference for Isolator Side 2.
6	V_0	Logic Output.
7	GND ₂	Ground 2. Ground reference for Isolator Side 2.
8	V_{DD2}	Supply Voltage for Isolator Side 2.

¹ Refer to the AN-1109 Application Note for specific layout guidelines.

Rev. C | 11 of 16 analog.com

 $^{^1}$ PIN 1 AND PIN 3 ARE INTERNALLY CONNECTED. EITHER OR BOTH MAY BE USED FOR $\rm V_{DD1}.$ 2 PIN 5 AND PIN 7 ARE INTERNALLY CONNECTED. EITHER OR BOTH MAY BE USED FOR GND2.

TYPICAL PERFORMANCE CHARACTERISTICS

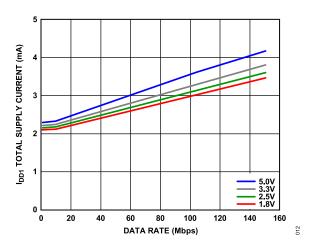


Figure 4. I_{DD1} Total Supply Current vs. Data Rate at Various Voltages

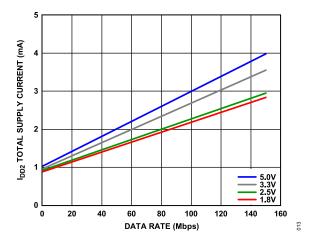


Figure 5. I_{DD2} Total Supply Current vs. Data Rate at Various Voltages

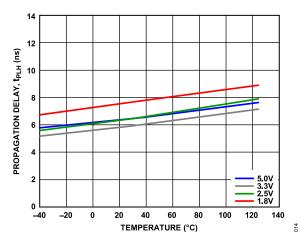


Figure 6. Propagation Delay, t_{PLH} vs. Temperature at Various Voltages

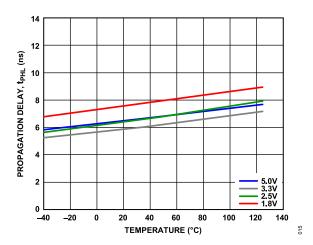


Figure 7. Propagation Delay, t_{PHL} vs. Temperature at Various Voltages

analog.com Rev. C | 12 of 16

APPLICATIONS INFORMATION

OVERVIEW

The ADuM110N uses a high frequency carrier to transmit data across the isolation barrier using *i*Coupler chip scale transformer coils separated by layers of polyimide isolation. Using an on-off keying (OOK) technique and the differential architecture shown in Figure 9 and Figure 10, the ADuM110N has very low propagation delay and high speed. Internal regulators and input/output design techniques allow logic and supply voltages over a wide range from 1.7 V to 5.5 V, offering voltage translation of 1.8 V, 2.5 V, 3.3 V, and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference. Radiated emissions are minimized with a spread spectrum OOK carrier and other techniques.

Figure 9 shows the waveforms for the ADuM110N0 models, which have the condition of the fail-safe output state equal to low, where the carrier waveform is off when the input state is low. If the input side is off or not operating, the fail-safe output state of low (noted by a 0 in the model number) sets the output to low. For the ADuM110N1 models, which have a fail-safe output state of high, Figure 10 shows the conditions where the carrier waveform is off when the input state is high. When the input side is off or not operating, the fail-safe output state of high (noted by a 1 in the model number) sets the output to high. See the Ordering Guide for the model numbers that have the fail-safe output state of low or the fail-safe output state of high.

PRINTED CIRCUIT BOARD (PCB) LAYOUT

The ADuM110N digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 8). Bypass capacitors are most conveniently connected between Pin 1 and Pin 4 for V_{DD1} and between Pin 5 and Pin 8 for V_{DD2} . The recommended bypass capacitor value is between 0.01 μ F and 0.1 μ F. The total lead length between both ends of the capacitor and the input power supply pin must not exceed 10 mm.

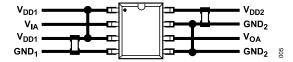


Figure 8. Recommended PCB Layout

In applications involving high common-mode transients, ensure that board coupling across the isolation barrier is minimized. Furthermore, design the board layout such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this can cause voltage differentials between pins exceeding the Absolute Maximum Ratings of the device, thereby leading to latch-up or permanent damage.

See the AN-1109 Application Note for board layout guidelines.

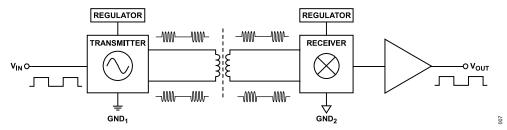


Figure 9. Operational Block Diagram of a Single Channel with a Low Fail-Safe Output State

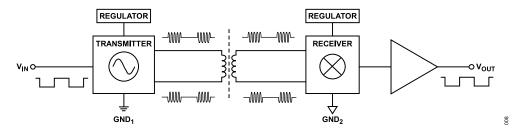


Figure 10. Operational Block Diagram of a Single Channel with a High Fail-Safe Output State

analog.com Rev. C | 13 of 16

APPLICATIONS INFORMATION

PROPAGATION DELAY RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a Logic 0 output may differ from the propagation delay to a Logic 1 output.

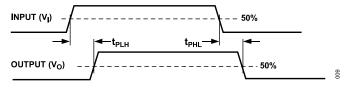


Figure 11. Propagation Delay Parameters

Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the timing of the input signal is preserved.

Propagation delay skew is the maximum amount the propagation delay differs between multiple ADuM110N components operating under the same conditions

JITTER MEASUREMENT

Figure 12 shows the eye diagram for the ADuM110N. The measurement was taken using an Agilent 81110A pulse pattern generator at 150 Mbps with pseudorandom bit sequences (PRBS) 2(n − 1), n = 14, for 5 V supplies. Jitter was measured with the Tektronix Model 5104B oscilloscope, 1 GHz, 10 GS/sec with the DPOJET jitter and eye diagram analysis tools. The result shows a typical measurement on the ADuM110N with 380 ps p-p jitter.

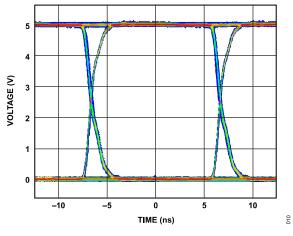


Figure 12. Eye Diagram

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation as well as on the materials and material interfaces

The two types of insulation degradation of primary interest are breakdown along surfaces exposed to the air and insulation wear out. Surface breakdown is the phenomenon of surface tracking, and the primary determinant of surface creepage requirements in system level standards. Insulation wear out is the phenomenon where charge injection or displacement currents inside the insulation material cause long-term insulation degradation.

Surface Tracking

Surface tracking is addressed in electrical safety standards by setting a minimum surface creepage based on the working voltage, the environmental conditions, and the properties of the insulation material. Safety agencies perform characterization testing on the surface insulation of components that allows the components to be categorized in different material groups. Lower material group ratings are more resistant to surface tracking and, therefore, can provide adequate lifetime with smaller creepage. The minimum creepage for a given working voltage and material group is in each system level standard and is based on the total rms voltage across the isolation, pollution degree, and material group. The material group and creepage for the ADuM110N isolators are presented in Table 9.

Insulation Wear Out

The lifetime of insulation caused by wear out is determined by its thickness, material properties, and the voltage stress applied. It is important to verify that the product lifetime is adequate at the application working voltage. The working voltage supported by an isolator for wear out may not be the same as the working voltage supported for tracking. It is the working voltage applicable to tracking that is specified in most standards.

Testing and modeling have shown that the primary driver of long-term degradation is displacement current in the polyimide insulation causing incremental damage. The stress on the insulation can be broken down into broad categories, such as: dc stress, which causes very little wear out because there is no displacement current, and an ac component time varying voltage stress, which causes wear out.

The ratings in certification documents are usually based on 60 Hz sinusoidal stress because this reflects isolation from line voltage. However, many practical applications have combinations of 60 Hz ac and dc across the barrier as shown in Equation 1. Because only the ac portion of the stress causes wear out, the equation can be rearranged to solve for the ac rms voltage, as is shown in Equation 2. For insulation wear out with the polyimide materials used in these products, the ac rms voltage determines the product lifetime.

$$V_{RMS} = \sqrt{V_{AC\,RMS}^2 + V_{DC}^2} \tag{1}$$

01

$$V_{AC\ RMS} = \sqrt{V_{RMS}^2 - V_{DC}^2} \tag{2}$$

analog.com Rev. C | 14 of 16

APPLICATIONS INFORMATION

where:

 $V_{AC\ RMS}$ is the time varying portion of the working voltage. V_{DC} is the dc offset of the working voltage.

 V_{RMS} is the total rms working voltage.

Calculation and Use of Parameters Example

The following example frequently arises in power conversion applications. Assume that the line voltage on one side of the isolation is 240 $V_{AC\ RMS}$ and a 400 V_{DC} bus voltage is present on the other side of the isolation barrier. The isolator material is polyimide. To establish the critical voltages in determining the creepage, clearance and lifetime of a device, see Figure 13 and the following equations.

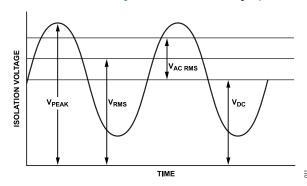


Figure 13. Critical Voltage Example

The working voltage across the barrier from Equation 1 is

$$V_{RMS} = \sqrt{V_{AC RMS}^2 + V_{DC}^2}$$

$$V_{RMS} = \sqrt{240^2 + 400^2}$$

$$V_{RMS} = 466 \text{ V}$$
(3)

This is the working voltage used together with the material group and pollution degree when looking up the creepage required by a system standard.

To determine if the lifetime is adequate, obtain the time varying portion of the working voltage. To obtain the ac rms voltage, use Equation 2.

$$V_{AC RMS} = \sqrt{V_{RMS}^2 - V_{DC}^2}$$

$$V_{AC RMS} = \sqrt{466^2 + 400^2}$$

$$V_{AC RMS} = 240 \text{ V rms}$$
(4)

In this case, the ac rms voltage is simply the line voltage of 240 V rms. This calculation is more relevant when the waveform is not sinusoidal. The value is compared to the limits for working voltage in Table 15 for the expected lifetime, less than a 60 Hz sine wave, and it is well within the limit for a 50-year service life.

Note that the dc working voltage limit in Table 15 is set by the creepage of the package as specified in IEC 60664-1. This value can differ for specific system level standards.

analog.com Rev. C | 15 of 16

OUTLINE DIMENSIONS

Package Drawing (Option)	Package Type	Package Description
R-8	SOIC_N	8-Lead Standard Small Outline Package

For the latest package outline information and land patterns (footprints), go to Package Index.

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADuM110N1BRZ	-40°C to +125°C	8-Lead SOIC_N	Tube, 98	R-8
ADuM110N1BRZ-RL7	-40°C to +125°C	8-Lead SOIC_N	Reel, 1000	R-8
ADuM110N0BRZ	-40°C to +125°C	8-Lead SOIC_N	Tube, 98	R-8
ADuM110N0BRZ-RL7	-40°C to +125°C	8-Lead SOIC_N	Reel, 1000	R-8

¹ Z = RoHS Compliant Part.

NUMBER OF INPUTS, WITHSTAND VOLTAGE RATING, AND FAIL-SAFE OUTPUT STATE OPTIONS

			Withstand Voltage Rating (kV	
Model ¹	No. of Inputs, V _{DD1} Side	No. of Inputs, V _{DD2} Side	rms)	Fail-Safe Output State
ADuM110N1BRZ	1	0	3.0	High
ADuM110N1BRZ-RL7	1	0	3.0	High
ADuM110N0BRZ	1	0	3.0	Low
ADuM110N0BRZ-RL7	1	0	3.0	Low

¹ Z = RoHS Compliant Part.

