- Low Supply-Voltage Range, 1.8 V to 3.6 V
- Ultra-Low Power Consumption:
 - Active Mode: 400 µA at 1 MHz, 3.0 V
 - Standby Mode: 1.6 μA
 - Off Mode (RAM Retention): 0.1 μA
- Five Power-Saving Modes
- Wake-Up From Standby Mode in Less Than 6 μs
- Frequency-Locked Loop, FLL+
- 16-Bit RISC Architecture, 125-ns Instruction Cycle Time
- Three Independent 16-bit Sigma-Delta A/D Converters With Differential PGA Inputs
- 16-Bit Timer_A With Three Capture/Compare Registers
- Integrated LCD Driver for 128 Segments
- Serial Communication Interface (USART), Asynchronous UART, or Synchronous SPI Selectable by Software
- Brownout Detector

- Supply Voltage Supervisor/Monitor With Programmable Level Detection
- Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse
- Bootstrap Loader in Flash Devices
- Family Members Include:
 - MSP430F423A:

8KB + 256B Flash Memory, 256B RAM

MSP430F425A:

16KB + 256B Flash Memory, 512B RAM

- MSP430F427A:

32KB + 256B Flash Memory, 1KB RAM

- Available in 64-Pin Quad Flat Pack (QFP)
- For Complete Module Descriptions, Refer to the MSP430x4xx Family User's Guide, Literature Number SLAU056

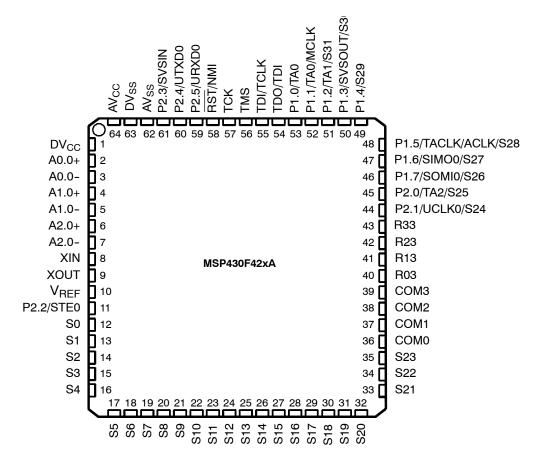
description

The Texas Instruments MSP430 family of ultra-low power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs.

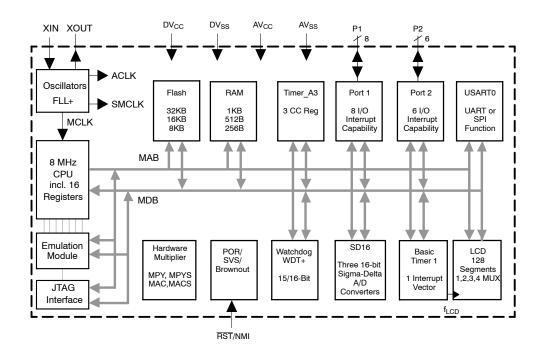
The MSP430F42xA series are microcontroller configurations with three independent 16-bit sigma-delta A/D converters, each with an integrated differential programmable gain amplifier input stage. Also included are a built-in 16-bit timer, 128 LCD segment drive capability, hardware multiplier, and 14 I/O pins.

Typical applications include high-resolution applications such as handheld metering equipment, weigh scales, and energy meters.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AVAILABLE OPTIONS


	PACKAGED DEVICES
T _A	PLASTIC 64-PIN QFP (PM)
-40°C to 85°C	MSP430F423AIPM MSP430F425AIPM MSP430F427AIPM

pin designation[†]

[†] It is recommended to short unused analog input pairs and connect them to analog ground.

functional block diagram

Terminal Functions

TERMINAL	TERMINAL		
NAME	NO.	I/O	DESCRIPTION
DV _{CC}	1		Digital supply voltage, positive terminal.
A0.0+	2	I	Internal connection to SD16 Channel 0, input 0 +. (see Note 1)
A0.0-	3	I	Internal connection to SD16 Channel 0, input 0 (see Note 1)
A1.0+	4	I	Internal connection to SD16 Channel 1, input 0 +. (see Note 1)
A1.0-	5	I	Internal connection to SD16 Channel 1, input 0 (see Note 1)
A2.0+	6	I	Internal connection to SD16 Channel 2, input 0 +. (see Note 1)
A2.0-	7	I	Internal connection to SD16 Channel 2, input 0 (see Note 1)
XIN	8	- 1	Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT	9	0	Output terminal of crystal oscillator XT1
V _{REF}	10	I/O	Input for an external reference voltage / internal reference voltage output (can be used as mid-voltage)
P2.2/STE0	11	I/O	General-purpose digital I/O / slave transmit enable—USART0/SPI mode
S0	12	0	LCD segment output 0
S1	13	0	LCD segment output 1
S2	14	0	LCD segment output 2
S3	15	0	LCD segment output 3
S4	16	0	LCD segment output 4
S5	17	0	LCD segment output 5
S6	18	0	LCD segment output 6
S7	19	0	LCD segment output 7
S8	20	0	LCD segment output 8
S9	21	0	LCD segment output 9
S10	22	0	LCD segment output 10
S11	23	0	LCD segment output 11
S12	24	0	LCD segment output 12
S13	25	0	LCD segment output 13
S14	26	0	LCD segment output 14
S15	27	0	LCD segment output 15
S16	28	0	LCD segment output 16
S17	29	0	LCD segment output 17
S18	30	0	LCD segment output 18
S19	31	0	LCD segment output 19
S20	32	0	LCD segment output 20
S21	33	0	LCD segment output 21
S22	34	0	LCD segment output 22
S23	35	0	LCD segment output 23
COM0	36	0	Common output, COM0-3 are used for LCD backplanes.
COM1	37	0	Common output, COM0-3 are used for LCD backplanes.
COM2	38	0	Common output, COM0-3 are used for LCD backplanes.
СОМЗ	39	0	Common output, COM0-3 are used for LCD backplanes.
R03	40	I	Input port of fourth positive (lowest) analog LCD level (V5)

NOTE 1: It is recommended to short unused analog input pairs and connect them to analog ground.

Terminal Functions (Continued)

TERMINAL			DECODINE	
NAME	NO.	I/O	DESCRIPTION	
R13	41	I	Input port of third most positive analog LCD level (V4 or V3)	
R23	42	I	Input port of second most positive analog LCD level (V2)	
R33	43	0	Output port of most positive analog LCD level (V1)	
P2.1/UCLK0/S24	44	I/O	General-purpose digital I/O / external clock input-USART0/UART or SPI mode, clock output—USART0/SF mode / LCD segment output 24 (See Note 1)	
P2.0/TA2/S25	45	I/O	General-purpose digital I/O / Timer_A Capture: CCI2A input, Compare: Out2 output / LCD segment output 25 (See Note 1)	
P1.7/SOMI0/S26	46	I/O	General-purpose digital I/O / slave out/master in of USART0/SPI mode / LCD segment output 26 (See Note 1)	
P1.6/SIMO0/S27	47	I/O	General-purpose digital I/O / slave in/master out of USART0/SPI mode / LCD segment output 27 (See Note 1)	
P1.5/TACLK/ ACLK/S28	48	I/O	General-purpose digital I/O / Timer_A and SD16 clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) / LCD segment output 28 (See Note 1)	
P1.4/S29	49	I/O	General-purpose digital I/O / LCD segment output 29 (See Note 1)	
P1.3/SVSOUT/ S30	50	I/O	General-purpose digital I/O / SVS: output of SVS comparator / LCD segment output 30 (See Note 1)	
P1.2/TA1/S31	51	I/O	General-purpose digital I/O / Timer_A, Capture: CCI1A, CCI1B input, Compare: Out1 output / LCD segment output 31 (See Note 1)	
P1.1/TA0/MCLK	52	I/O	General-purpose digital I/O / Timer_A, Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive	
P1.0/TA0	53	I/O	General-purpose digital I/O / Timer_A, Capture: CCI0A input, Compare: Out0 output / BSL transmit	
TDO/TDI	54	I/O	Test data output port. TDO/TDI data output or programming data input terminal.	
TDI/TCLK	55		Test data input or test clock input. The device protection fuse is connected to TDI.	
TMS	56	ı	Test mode select. TMS is used as an input port for device programming and test.	
TCK	57	ı	Test clock. TCK is the clock input port for device programming and test.	
RST/NMI	58	ı	Reset input or nonmaskable interrupt input port	
P2.5/URXD0	59	I/O	General-purpose digital I/O / receive data in—USART0/UART mode	
P2.4/UTXD0	60	I/O	General-purpose digital I/O / transmit data out—USART0/UART mode	
P2.3/SVSIN	61	I/O	General-purpose digital I/O / Analog input to brownout, supply voltage supervisor	
AV _{SS}	62		Analog supply voltage, negative terminal. Supplies SD16, SVS, brownout, oscillator, and LCD resistive divider circuitry.	
DV _{SS}	63		Digital supply voltage, negative terminal	
AV _{CC}	64		Analog supply voltage, positive terminal. Supplies SD16, SVS, brownout, oscillator, and LCD resistive divider circuitry; must not power up prior to DV _{CC} .	

NOTE 1: LCD function is selected automatically when applicable LCD module control bits are set, not with PxSEL bits.

short-form description

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for the source operand and four addressing modes for the destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

instruction set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.

Table 1. Instruction Word Formats

Dual operands, source-destination	e.g., ADD R4,R5	R4 + R5> R5
Single operands, destination only	e.g., CALL R8	PC>(TOS), R8> PC
Relative jump, un/conditional	e.g., JNE	Jump-on-equal bit = 0

Table 2. Address Mode Descriptions

ADDRESS MODE	s	D	SYNTAX	EXAMPLE	OPERATION
Register	•	•	MOV Rs,Rd	MOV R10,R11	R10> R11
Indexed	•	•	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)> M(6+R6)
Symbolic (PC relative)	•	•	MOV EDE,TONI		M(EDE)> M(TONI)
Absolute	•	•	MOV &MEM,&TCDAT		M(MEM)> M(TCDAT)
Indirect	•		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)
Indirect autoincrement	•		MOV @Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 + 2> R10
Immediate	•		MOV #X,TONI	MOV #45,TONI	#45> M(TONI)

NOTE: S = source D = destination

operating modes

The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active.
- Low-power mode 0 (LPM0)
 - CPU is disabled.

ACLK and SMCLK remain active, MCLK is available to modules. FLL+ loop control remains active.

- Low-power mode 1 (LPM1)
 - CPU is disabled.

ACLK and SMCLK remain active, MCLK is available to modules. FLL+ loop control is disabled.

- Low-power mode 2 (LPM2)
 - CPU is disabled.

MCLK, FLL+ loop control, and DCOCLK are disabled. DCO dc generator remains enabled. ACLK remains active.

- Low-power mode 3 (LPM3)
 - CPU is disabled.

MCLK, FLL+ loop control, and DCOCLK are disabled. DCO dc generator is disabled. ACLK remains active.

- .

CPU is disabled. ACLK is disabled.

Low-power mode 4 (LPM4)

MCLK, FLL+ loop control, and DCOCLK are disabled.

DCO dc generator is disabled.

Crystal oscillator is stopped.

MSP430F42xA MIXED SIGNAL MICROCONTROLLER

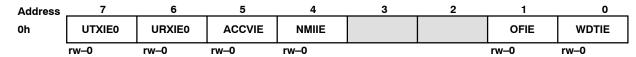
SLAS587 - FEBRUARY 2008

interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-up External reset Watchdog Flash memory PC out-of-range (see Note 4)	WDTIFG KEYV (see Note 1)	Reset	0FFFEh	15, highest
NMI Oscillator fault Flash memory access violation	NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1 and 3)	(Non)maskable (Non)maskable (Non)maskable	0FFFCh	14
			0FFFAh	13
SD16	SD16CCTLx SD16OVIFG, SD16CCTLx SD16IFG (see Notes 1 and 2)	Maskable	0FFF8h	12
			0FFF6h	11
Watchdog timer	WDTIFG	Maskable	0FFF4h	10
USART0 receive	URXIFG0	Maskable	0FFF2h	9
USART0 transmit	UTXIFG0	Maskable	0FFF0h	8
			0FFEEh	7
Timer_A3	TACCR0 CCIFG (see Note 2)	Maskable	0FFECh	6
Timer_A3	TACCR1 and TACCR2 CCIFGs, and TACTL TAIFG (see Notes 1 and 2)	Maskable	0FFEAh	5
I/O port P1 (eight flags)	P1IFG.0 to P1IFG.7 (see Notes 1 and 2)	Maskable	0FFE8h	4
			0FFE6h	3
			0FFE4h	2
I/O port P2 (eight flags)	P2IFG.0 to P2IFG.7 (see Notes 1 and 2)	Maskable	0FFE2h	1
Basic Timer1	BTIFG	Maskable	0FFE0h	0, lowest

NOTES: 1. Multiple source flags


- 2. Interrupt flags are located in the module.
- 3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt-enable cannot.
- 4. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges (from 0600h to 0BFFh).

special function registers

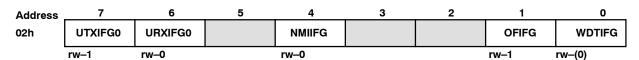
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits that are not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement.

interrupt enable 1 and 2

WDTIE: Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer

is configured in interval timer mode.

OFIE: Oscillator fault interrupt enable
NMIIE: Nonmaskable interrupt enable


ACCVIE: Flash access violation interrupt enable

URXIE0: USART0: UART and SPI receive-interrupt enable UTXIE0: USART0: UART and SPI transmit-interrupt enable

BTIE: Basic Timer1 interrupt enable

interrupt flag register 1 and 2

WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on V_{CC}

power up or a reset condition at the RST/NMI pin in reset mode.

OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin

URXIFG0: USART0: UART and SPI receive flag UTXIFG0: USART0: UART and SPI transmit flag

BTIFG: Basic Timer1 interrupt flag

module enable registers 1 and 2

Address	7	6	5	4	3	2	1	0
04h	UTXE0	URXE0 USPIE0						
	rw–0	rw–0						

URXE0: USART0: UART mode receive enable UTXE0: USART0: UART mode transmit enable

USPIE0: USART0: SPI mode transmit and receive enable

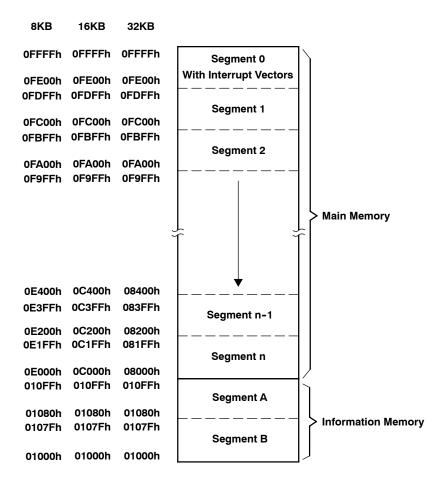
Address 7 6 5 4 3 2 1 0
05h

Legend: rw-0,1: rw-(0,1): Bit can be read and written. It Is reset or set by PUC. Bit can be read and written. It Is reset or set by POR. SFR Bit Not Present in Device.

memory organization

		MSP430F423A	MSP430F425A	MSP430F427A
Memory Interrupt vector Code memory	Size Flash Flash	8KB 0FFFFh to 0FFE0h 0FFFFh to 0E000h	16KB 0FFFFh to 0FFE0h 0FFFFh to 0C000h	32KB 0FFFFh to 0FFE0h 0FFFFh to 08000h
Information memory	Size	256 Byte 010FFh to 01000h	256 Byte 010FFh to 01000h	256 Byte 010FFh to 01000h
Boot memory	Size	1kB 0FFFh to 0C00h	1kB 0FFFh to 0C00h	1kB 0FFFh to 0C00h
RAM	Size	256 Byte 02FFh to 0200h	512 Byte 03FFh to 0200h	1KB 05FFh to 0200h
Peripherals	16 bit 8 bit 8-bit SFR	01FFh to 0100h 0FFh to 010h 0Fh to 00h	01FFh to 0100h 0FFh to 010h 0Fh to 00h	01FFh to 0100h 0FFh to 010h 0Fh to 00h

bootstrap loader (BSL)


The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the application report *Features of the MSP430 Bootstrap Loader*, literature number SLAA089.

BSL FUNCTION	PM PACKAGE PINS
Data transmit	53 - P1.0
Data receive	52 - P1.1

flash memory

The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A and B can be erased individually, or as a group with segments 0 to n.
 Segments A and B are also called information memory.
- New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use.

peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the *MSP430x4xx Family User's Guide*, literature number SLAU056.

oscillator and system clock

The clock system in the MSP430F42xA family of devices is supported by the FLL+ module, which includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a high-frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μ s. The FLL+ module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal.
- Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules.
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8.

brownout, supply voltage supervisor (SVS)

The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user-selectable level and supports both supply-voltage supervision (the device is automatically reset) and supply-voltage monitoring (SVM) (the device is not automatically reset).

The CPU begins code execution after the brownout circuit releases the device reset. However, V_{CC} may not have ramped to $V_{CC(min)}$ at that time. The user must ensure the default FLL+ settings are not changed until V_{CC} reaches $V_{CC(min)}$. If desired, the SVS circuit can be used to determine when V_{CC} reaches $V_{CC(min)}$.

digital I/O

There are two 8-bit I/O ports implemented—ports P1 and P2 (only six P2 I/O signals are available on external pins):

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all the eight bits of port P1 and six bits of P2.
- Read/write access to port-control registers is supported by all instructions.

NOTE

Six bits of port P2 (P2.0 to P2.5) are available on external pins, but all control and data bits for port P2 are implemented.

Basic Timer1

The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts and clock for the LCD module.

LCD drive

The LCD driver generates the segment and common signals required to drive an LCD display. The LCD controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral.

watchdog timer (WDT+)

The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

Timer A3

Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

		TIMER_A3 SIGNA	L CONNECTIONS		
INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	OUTPUT PIN NUMBER
48 - P1.5	TACLK	TACLK			
	ACLK	ACLK	-	A1A	
	SMCLK	SMCLK	Timer	NA	
48 - P1.5	TACLK	INCLK			
53 - P1.0	TA0	CCI0A			53 - P1.0
52 - P1.1	TA0	CCI0B	0000	TA0	
	DV _{SS}	GND	CCR0		
	DV _{CC}	V _{CC}			
51 - P1.2	TA1	CCI1A			51 - P1.2
51 - P1.2	TA1	CCI1B	0004	TA 4	
	DV _{SS}	GND	CCR1	TA1	
	DV _{CC}	V _{CC}	1		
45 - P2.0	TA2	CCI2A			45 - P2.0
	ACLK (internal)	CCI2B		TA2	
	DV _{SS}	GND	CCR2		
	DV _{CC}	V _{CC}			

universal synchronous/asynchronous receive transmit (USART)

The MSP430F42xA devices have one hardware USART peripheral module (USART0) that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.

hardware multiplier

The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16 , 16×8 , 8×16 , and 8×8 bit operations. The module is capable of supporting signed and unsigned multiplication, as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required.

SD16

The SD16 module integrates three independent 16-bit sigma-delta A/D converters, internal temperature sensor, and built-in voltage reference. Each channel is designed with a fully differential analog input pair and programmable gain amplifier input stage.

peripheral file map

	PERIPHERALS WITH WORD ACCESS		
Watchdog	Watchdog timer control	WDTCTL	0120h
Timer_A3	Timer_A interrupt vector	TAIV	012Eh
	Timer_A control	TACTL	0160h
	Capture/compare control 0	TACCTL0	0162h
	Capture/compare control 1	TACCTL1	0164h
	Capture/compare control 2	TACCTL2	0166h
	Timer_A register	TAR	0170h
	Capture/compare register 0	TACCR0	0172h
	Capture/compare register 1	TACCR1	0174h
	Capture/compare register 2	TACCR2	0176h
Hardware Multiplier	Sum extend	SUMEXT	013Eh
	Result high word	RESHI	013Ch
	Result low word	RESLO	013Ah
	Second operand	OP2	0138h
	Multiply signed + accumulate/operand1	MACS	0136h
	Multiply + accumulate/operand1	MAC	0134h
	Multiply signed/operand1	MPYS	0132h
	Multiply unsigned/operand1	MPY	0130h
Flash	Flash control 3	FCTL3	012Ch
	Flash control 2	FCTL2	012Ah
	Flash control 1	FCTL1	0128h
SD16	General control	SD16CTL	0100h
(see also: Peripherals with Byte Access)	Channel 0 control	SD16CCTL0	0102h
man Byte Addess,	Channel 1 control	SD16CCTL1	0104h
	Channel 2 control	SD16CCTL2	0106h
	Reserved		0108h
	Reserved		010Ah
	Reserved		010Ch
	Reserved		010Eh
	Interrupt vector word register	SD16IV	0110h
	Channel 0 conversion memory	SD16MEM0	0112h
	Channel 1 conversion memory	SD16MEM1	0114h
	Channel 2 conversion memory	SD16MEM2	0116h
	Reserved		0118h
	Reserved		011Ah
	Reserved		011Ch
	Reserved		011Eh

peripheral file map (continued)

	PERIPHERALS WITH BYTE ACCESS		
SD16	Channel 0 input control	SD16INCTL0	0B0h
(see also: Peripherals	Channel 1 input control	SD16INCTL1	0B1h
with Word Access)	Channel 2 input control	SD16INCTL2	0B2h
	Reserved		0B3h
	Reserved		0B4h
	Reserved		0B5h
	Reserved		0B6h
	Reserved		0B7h
	Channel 0 preload	SD16PRE0	0B8h
	Channel 1 preload	SD16PRE1	0B9h
	Channel 2 preload	SD16PRE2	0BAh
	Reserved		0BBh
	Reserved		0BCh
	Reserved		0BDh
	Reserved		0BEh
	Reserved		0BFh
LCD	LCD memory 20	LCDM20	0A4h
	:	:	:
	LCD memory 16	LCDM16	0A0h
	LCD memory 15	LCDM15	09Fh
	:	:	:
	LCD memory 1	LCDM1	091h
	LCD control and mode	LCDCTL	090h
USART0	Transmit buffer	U0TXBUF	077h
	Receive buffer	U0RXBUF	076h
	Baud rate	U0BR1	075h
	Baud rate	U0BR0	074h
	Modulation control Receive control	U0MCTL U0RCTL	073h 072h
	Transmit control	UOTCTL	072f1 071h
	USART control	U0CTL	07111 070h
Brownout, SVS	SVS control register	SVSCTL	056h
FLL+ Clock	FLL+ control 1	FLL_CTL1	054h
	FLL+ control 0	FLL_CTL0	053h
	System clock frequency control	SCFQCTL	052h
	System clock frequency integrator	SCFI1	051h
	System clock frequency integrator	SCFI0	050h
Basic Timer1	BT counter 2	BTCNT2	047h
	BT counter 1	BTCNT1	046h
	BT control	BTCTL	040h

peripheral file map (continued)

	PERIPHERALS WITH BYTE ACCESS (COM	NTINUED)	
Port P2	Port P2 selection	P2SEL	02Eh
	Port P2 interrupt enable	P2IE	02Dh
	Port P2 interrupt-edge select	P2IES	02Ch
	Port P2 interrupt flag	P2IFG	02Bh
	Port P2 direction	P2DIR	02Ah
	Port P2 output	P2OUT	029h
	Port P2 input	P2IN	028h
Port P1	Port P1 selection	P1SEL	026h
	Port P1 interrupt enable	P1IE	025h
	Port P1 interrupt-edge select	P1IES	024h
	Port P1 interrupt flag	P1IFG	023h
	Port P1 direction	P1DIR	022h
	Port P1 output	P1OUT	021h
	Port P1 input	P1IN	020h
Special Functions	SFR module enable 2	ME2	005h
	SFR module enable 1	ME1	004h
	SFR interrupt flag 2	IFG2	003h
	SFR interrupt flag 1	IFG1	002h
	SFR interrupt enable 2	IE2	001h
	SFR interrupt enable 1	IE1	000h

absolute maximum ratings†

Voltage applied at V _{CC} to V _{SS}	0.3 V to + 4.1 V
Voltage applied to any pin (see Note 1)	0.3 V to V _{CC} + 0.3 V
Diode current at any device terminal	±2 mA
Storage temperature (unprogrammed device)	55°C to 150°C
Storage temperature (programmed device)	40°C to 85°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

PARA	AMETER		MIN	NOM	MAX	UNITS
Supply voltage during program execution, SD16 V_{CC} (AV $_{CC}$ = DV $_{CC}$ = V_{CC}) (see Note 1)	MSP430F42xA	1.8		3.6	٧	
Supply voltage during program execution, SD16 PORON = 1, V_{CC} (AV $_{CC}$ = DV $_{CC}$ = V_{CC}) (see N	MSP430F42xA	2.0		3.6	٧	
Supply voltage during program execution, SD16 during programming of flash memory, $V_{\rm CC}$ (AV $_{\rm C}$	MSP430F42xA	2.7		3.6	V	
Supply voltage, V _{SS} (AV _{SS} = DV _{SS} = V _{SS})			0		0	V
Operating free-air temperature range, T _A		MSP430F42xA	-40		85	°C
	LF selected, XTS_FLL = 0	Watch crystal		32768		Hz
LFXT1 crystal frequency, f _(LFXT1) (see Note 3)	XT1 selected, XTS_FLL = 1	Ceramic resonator	450		8000	kHz
, ,	XT1 selected, XTS_FLL = 1	Crystal	1000		8000	kHz
D (()		V _{CC} = 1.8 V	DC		4.15	
Processor frequency (signal MCLK), f _(System)		V _{CC} = 3.6 V	DC		8	MHz

- NOTES: 1. It is recommended to power AV_{CC} and DV_{CC} from the same source. A maximum difference of 0.3 V between AV_{CC} and DV_{CC} can be tolerated during power up and operation.
 - 2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing supply voltage. POR is going inactive when the supply voltage is raised above minimum supply voltage plus the hysteresis of the SVS circuitry.
 - 3. The LFXT1 oscillator in LF-mode requires a watch crystal.

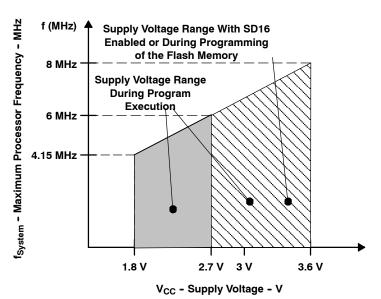


Figure 1. Frequency vs Supply Voltage

NOTE 1: All voltages referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

supply current into AV_{CC} + DV_{CC} excluding external current (see Note 1)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
I _(AM)	Active mode, $f_{(MCLK)} = f_{(SMCLK)} = f_{(DCO)} = 1 \text{ MHz},$ $f_{(ACLK)} = 32,768 \text{ Hz}, \text{ XTS_FLL} = 0$ (program executes in flash)	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	3 V		400	500	μΑ
I _(LPM0)	Low-power mode, (LPM0/LPM1) $f_{(MCLK)} = f_{(SMCLK)} = f_{(DCO)} = 1 \text{ MHz},$ $f_{(ACLK)} = 32,768 \text{ Hz}, XTS_FLL = 0$ $FN_8 = FN_4 = FN_3 = FN_2 = 0 \text{ (see Note 2)}$	T _A = -40°C to 85°C	3 V		130	150	μΑ
I _(LPM2)	Low-power mode, (LPM2) (see Note 2)	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	3 V		10	22	μΑ
		T _A = -40°C			1.5	2.0	μΑ
١.	Low navier made (LDMO) (and Note O)	$T_A = 25^{\circ}C$	3 V		1.6	2.1	
I _(LPM3)	Low-power mode, (LPM3) (see Note 2)	$T_A = 60^{\circ}C$	3 V		1.7	2.2	
		$T_A = 85^{\circ}C$			2.0	3.5	
		T _A = -40°C			0.1	0.5	
I _(LPM4)	Low-power mode, (LPM4) (see Note 2)	T _A = 25°C	3 V	_	0.1	0.5	μΑ
` ′		T _A = 85°C			0.8	2.5	

NOTES: 1. All inputs are tied to 0 V or V_{CC}. Outputs do not source or sink any current.

The current consumption in LPM2, LPM3, and LPM4 are measured with active Basic Timer1 and LCD (ACLK selected).

The current consumption of the SD16 and the SVS module are specified in their respective sections.

LPMx currents measured with WDT disabled.

The currents are characterized with a KDS Daishinku DT-38 (6 pF) crystal.

2. Current for brownout included.

current consumption of active mode versus system frequency

$$I_{(AM)} = I_{(AM)} [1 \text{ MHz}] \times f_{(System)} [MHz]$$

current consumption of active mode versus supply voltage

$$I_{(AM)} = I_{(AM) [3 V]} + 170 \mu A/V \times (V_{CC} - 3 V)$$

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

Schmitt-trigger inputs - Ports P1 and P2, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)

	PARAMETER	V _{CC}	MIN	TYP MAX	UNIT
V_{IT+}	Positive-going input threshold voltage	3 V	1.5	1.98	V
V_{IT-}	Negative-going input threshold voltage	3 V	0.9	1.3	V
V_{hys}	Input voltage hysteresis (V _{IT+} - V _{IT-})	3 V	0.45	1	V

inputs Px.x, TAx

PARAMETER		TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
t _(int) External interrupt timing		Port P1, P2: P1.x to P2.x, External trigger signal	3 V	1.5			cycle
		for the interrupt flag, (see Note 1)	3 V	50			ns
t _(cap)	Timer_A, capture timing	TAx	3 V	50			ns
f _(TAext)	Timer_A clock frequency externally applied to pin	TACLK, INCLK t _(H) = t _(L)	3 V			10	MHz
f _(TAint)	Timer_A clock frequency	SMCLK or ACLK signal selected	3 V			10	MHz

NOTES: 1. The external signal sets the interrupt flag every time the minimum t_(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t_(int). Both the cycle and timing specifications must be met to ensure the flag is set. t_(int) is measured in MCLK cycles.

leakage current (see Note 1)

	PARAMETER		TEST CONDITIONS	V _{cc}	MIN	NOM	MAX	UNIT
I _{lkg(P1.x)}	Leakage	Port P1	Port 1: V _(P1.x) (see Note 2)	3 V			±50	~^
I _{lkg(P2.x)}	current	Port P2	Port 2: V _(P2.x) (see Note 2)	3 V			±50	nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

2. The port pin must be selected as an input.

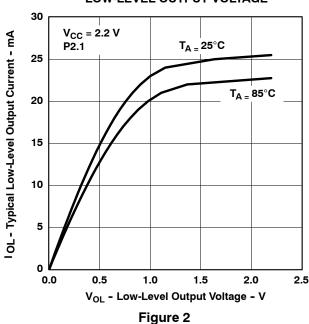
outputs - Ports P1 and P2

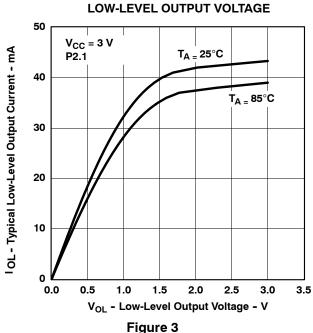
	PARAMETER	METER TEST CONDITIONS		MIN	TYP MAX	UNIT	
.,	High land and and reliance	$I_{OH(max)} = -1.5 \text{ mA (see Note 1)}$	0.1/	V _{CC} -0.25	V_{CC}	.,	
VOH	I Vou High-level output voltage	I _{OH(max) =} -6 mA (see Note 2)	3 V	V _{CC} -0.6	V_{CC}	٧	
V	Low-level output voltage	I _{OL(max) =} 1.5 mA (see Note 1)	3 V	V_{SS}	V _{SS} +0.25	V	
V _{OL}	Low-level output voltage	I _{OL(max) =} 6 mA (see Note 2)	3 V	V_{SS}	V _{SS} +0.6	V	

NOTES: 1. The maximum total current, I_{OH(max)} and I_{OL(max)}, for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop.

2. The maximum total current, I_{OH(max)} and I_{OL(max)}, for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop.

output frequency


PARAMETER		TEST CONDITIONS		V _{CC}	MIN	TYP	MAX	UNIT
$f_{Px.y}$	$\left(1\leq x\leq 2,\ 0\leq y\leq 7\right)$	$C_L = 20 \text{ pF}, I_L = \pm 1.5 \text{ mA}$	C _L = 20 pF, I _L = ± 1.5 mA		dc		12	MHz
f _{ACLK} , f _{MCLK} , f _{SMCLK}	P1.1/TA0/MCLK P1.5/TACLK/ACLK/S28	C _L = 20 pF		3 V			12	MHz
		D TA O. K/A O. K/O.	$f_{ACLK} = f_{LFXT1} = f_{XT1}$		40%		60%	
	Durby avala of autour	P1.5/TACLK/ACLK/S28, $C_L = 20 \text{ pF}$	$f_{ACLK} = f_{LFXT1} = f_{LF}$		30%		70%	
t _{Xdc}		ο <u>Γ</u> – 20 βι	f _{ACLK} = f _{LFXT1}	3 V		50%		
		P1.1/TA0/MCLK, C _L = 20	pF, f _{MCLK} = f _{DCOCLK}		50%- 15 ns	50%	50%+ 15 ns	


electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

outputs - Ports P1 and P2 (continued)

TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE

TYPICAL LOW-LEVEL OUTPUT CURRENT VS

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE

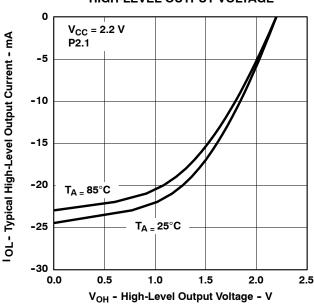
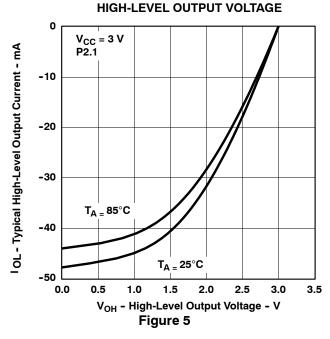



Figure 4

NOTE: One output loaded at a time

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

wake-up LPM3

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
t _{d(LPM3)}		f = 1 MHz				6	
	Delay time	f = 2 MHz	3 V			6	μs
		f = 3 MHz				6	

RAM (see Note 1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VRAMh	CPU halted (see Note 1)	1.6			V

NOTE 1: This parameter defines the minimum supply voltage when the data in the program memory RAM remain unchanged. No program execution should take place during this supply voltage condition.

LCD

PARA	METER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
V ₍₃₃₎		Voltage at R33		2.5		V _{CC} +0.2	
V ₍₂₃₎], , ,	Voltage at R23	╗,	(1	V ₃₃ -V ₀₃) × 2/3 +	V ₀₃	l ,,
V ₍₁₃₎	Analog voltage	Voltage at R13	V _{CC} = 3 V	(V ₍	₃₃₎ -V ₍₀₃₎) × 1/3 +	V ₍₀₃₎	V
V ₍₃₃₎ - V ₍₀₃₎		Voltage at R33/R03		2.5		V _{CC} +0.2	1
I _(R03)		R03 = V _{SS}	No load at all			±20	
I _(R13)	Input leakage	R13 = V _{CC} /3	segment and common lines,			±20	nA
I _(R23)]	$R23 = 2 \times V_{CC}/3$	V _{CC} = 3 V			±20	1
V _(Sxx0)				V ₍₀₃₎		V ₍₀₃₎ - 0.1	
V _(Sxx1)	Segment line], , , ,	V ₍₁₃₎		V ₍₁₃₎ - 0.1] ,,
V _(Sxx2)	voltage	$I_{(Sxx)} = -3 \mu A$	V _{CC} = 3 V	V(₂₃₎	•	V ₍₂₃₎ - 0.1	V
V _(Sxx3)				V ₍₃₃₎	•	V ₍₃₃₎ + 0.1	

USARTO (see Note 1)

PARA	METER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _(τ) USARTO): deglitch time	V _{CC} = 3 V, SYNC = 0, UART mode	150	280	500	ns

NOTE 1: The signal applied to the USART0 receive signal/terminal (URXD0) should meet the timing requirements of $t_{(\tau)}$ to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of $t_{(\tau)}$. The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0 line.

POR brownout, reset (see Notes 1 and 2)

PARA	METER	TEST CONDITIONS		TYP	MAX	UNIT
t _{d(BOR)}					2000	μs
V _{CC(start)}		dV _{CC} /dt ≤ 3 V/s (see Figure 6)		0.7 × V _(B_IT-)		V
V _(B_IT-)	Brownout	dV _{CC} /dt ≤ 3 V/s (see Figure 6, Figure 7, and Figure 8)			1.71	V
V _{hys(B_IT-)}	Brownout	dV _{CC} /dt ≤ 3 V/s (see Figure 6)	70	130	180	mV
t _(reset)		Pulse length needed at \overline{RST}/NMI pin to accepted reset internally, $V_{CC} = 3 \text{ V}$	2			μs

NOTES: 1. The current consumption of the brownout module is already included in the I_{CC} current consumption data. The voltage level $V_{(B_IT-)} + V_{hys(B_IT-)}$ is $\leq 1.8 \text{ V}$.

During power up, the CPU begins code execution following a period of t_{d(BOR)} after V_{CC} = V_(B_IT-) + V_{hys(B_IT-)}.
 The default FLL+ settings must not be changed until V_{CC} ≥ V_{CC(min)}, where V_{CC(min)} is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User's Guide (SLAU056) for more information on the brownout/SVS circuit.

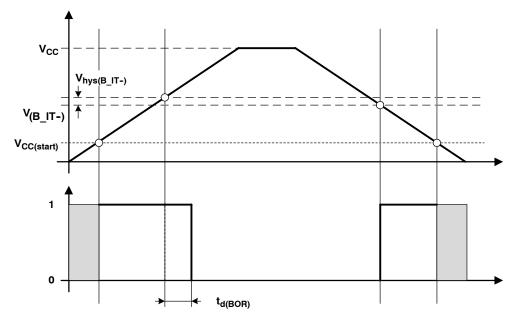


Figure 6. POR/Brownout Reset (BOR) vs Supply Voltage

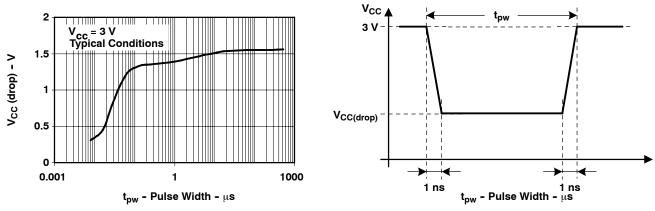


Figure 7. V_{CC(drop)} Level With a Square Voltage Drop to Generate a POR/Brownout Signal

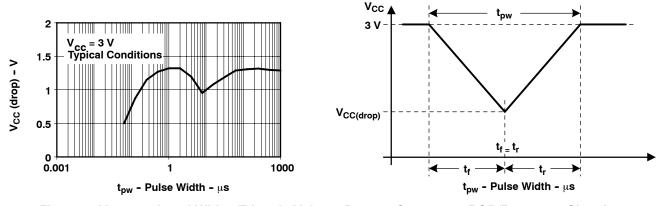


Figure 8. V_{CC(drop)} Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

SVS (supply voltage supervisor/monitor) (see Note 1)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	dV _{CC} /dt > 30 V/ms (see Figure 9)		5		150	
t _{(SVSR)4}	dV _{CC} /dt ≤ 30 V/ms				2000	μS
t _{d(SVSon)}	SVSon, switch from VLD = 0 to VLD ≠ 0, V _{CC} = 3	V	20		150	μS
t _{settle}	VLD ≠ 0 [‡]				12	μs
V _(SVSstart)	VLD ≠ 0, V _{CC} /dt ≤ 3 V/s (see Figure 9)			1.55	1.7	V
		VLD = 1	70	120	155	mV
V _{hys(SVS_IT-)}	V _{CC} /dt ≤ 3 V/s (see Figure 9)	VLD = 2 to 14	V _(SVS_IT-) x 0.001		V _(SVS_IT-) x 0.016	
, , _ ,	V _{CC} /dt ≤ 3 V/s (see Figure 9), External voltage applied on P2.3	1		20	mV	
		VLD = 1	1.8	1.9	2.05	
		VLD = 2	1.94	2.1	2.25	1
		VLD = 3	2.05	2.2	2.37	1
		VLD = 4	2.14	2.3	2.48]
		VLD = 5	2.24	2.4	2.6]
		VLD = 6	2.33	2.5	2.71]
	V _{CC} /dt ≤ 3 V/s (see Figure 9)	VLD = 7	2.46	2.65	2.86]
V _(SVS_IT-)	ACCidi z 2 A/2 (266 Lilidate a)	VLD = 8	2.58	2.8	3	V
v (SVS_II-)		VLD = 9	2.69	2.9	3.13] `
		VLD = 10	2.83	3.05	3.29]
		VLD = 11	2.94	3.2	3.42]
		VLD = 12	3.11	3.35	3.61 [†]]
		VLD = 13	3.24	3.5	3.76 [†]]
		VLD = 14	3.43	3.7†	3.99†]
	V _{CC} /dt ≤ 3 V/s (see Figure 9), External voltage applied on P2.3	VLD = 15	1.1	1.2	1.3	
I _{CC(SVS)} (see Note 1)	VLD ≠ 0, V _{CC} = 2.2 V/3 V			10	15	μΑ

 $^{^{\}dagger}$ The recommended operating voltage range is limited to 3.6 V.

NOTE 1: The current consumption of the SVS module is not included in the I_{CC} current consumption data.

[‡] t_{settle} is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV.

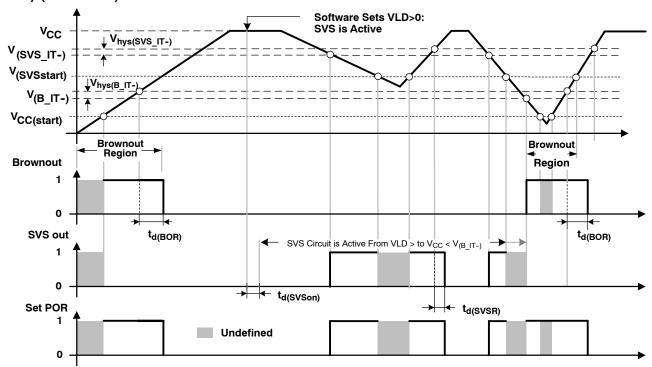


Figure 9. SVS Reset (SVSR) vs Supply Voltage

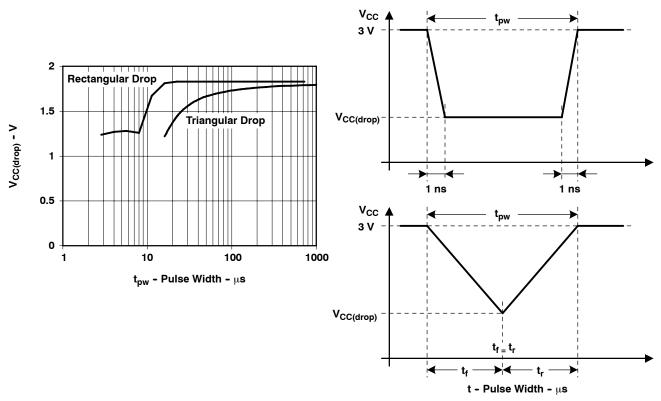


Figure 10. V_{CC(drop)} With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal

DCO

PARAMETER	TEST CONDITIONS		V _{CC}	MIN	TYP	MAX	UNIT
f _(DCOCLK)	$N_{(DCO)} = 01Eh$, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCO $f_{Crystal} = 32.768 \text{ kHz}$	OPLUS = 0,	3 V		1		MHz
f _(DCO = 2)	FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1		3 V	0.3	0.7	1.3	MHz
f _(DCO = 27)	FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1		3 V	2.7	6.1	11.3	MHz
f _(DCO = 2)	FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1		3 V	0.8	1.5	2.5	MHz
f _(DCO = 27)	N_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1		3 V	6.5	12.1	20	MHz
f _(DCO = 2)	FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1		3 V	1.3	2.2	3.5	MHz
f _(DCO = 27)	FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1	N_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1		10.3	17.9	28.5	MHz
f _(DCO = 2)	FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1		3 V	2.1	3.4	5.2	MHz
f _(DCO = 27)	FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1		3 V	16	26.6	41	MHz
f _(DCO = 2)	FN_8 = 1, FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1		3 V	4.2	6.3	9.2	MHz
f _(DCO = 27)	FN_8 = 1, FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1		3 V	30	46	70	MHz
0	Step size between adjacent DCO taps:	1 < TAP ≤ 20		1.06		1.11	
S _n	(see Figure 12 for taps 21 to 27)	$S_n = f_{DCO(Tap n+1)} / f_{DCO(Tap n)}$ see Figure 12 for taps 21 to 27) $TAP = 27$		1.07		1.17	
Dt	Temperature drift, N _(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0		3 V	-0.2	-0.3	-0.4	%/°C
D _V	Drift with V_{CC} variation, $N_{(DCO)} = 01Eh$, $FN_8 = FN_4 = FN_5$ D = 2, DCOPLUS = 0	B = FN_2 = 0,		0	5	15	%/V

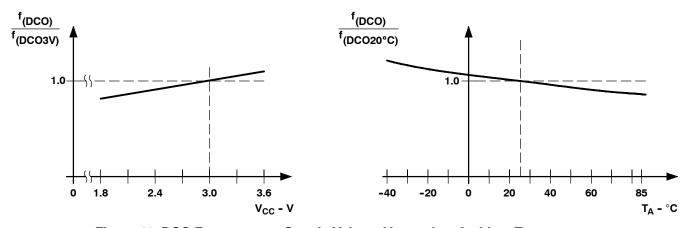


Figure 11. DCO Frequency vs Supply Voltage V_{CC} and vs Ambient Temperature

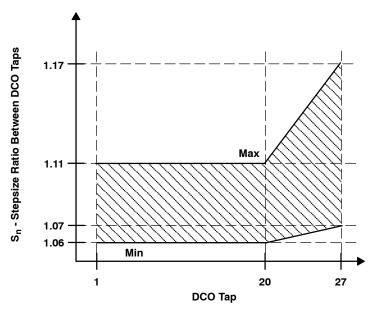


Figure 12. DCO Tap Step Size

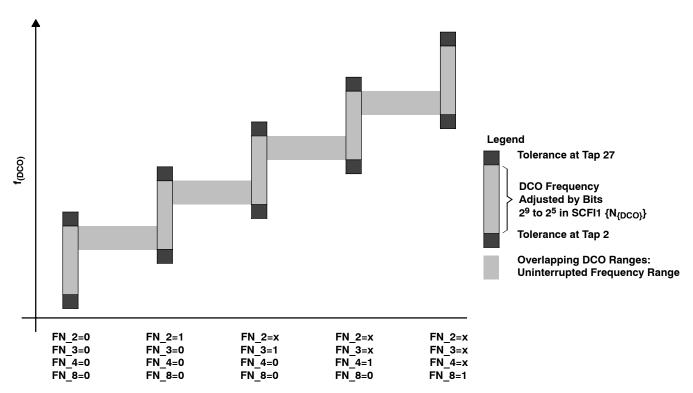


Figure 13. Five Overlapping DCO Ranges Controlled by FN_x Bits

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)

	PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	UNIT
		OSCCAPx = 0h	3 V		0		
	Integrated input capacitance	OSCCAPx = 1h	3 V		10		
C _{XIN}	(see Note 4)	OSCCAPx = 2h	3 V		14		pF
		OSCCAPx = 3h	3 V		18		
		OSCCAPx = 0h	3 V		0		
	Integrated output capacitance	OSCCAPx = 1h	3 V		10		_
C _{XOUT}	(see Note 4)	OSCCAPx = 2h	3 V		14		pF
		OSCCAPx = 3h	3 V		18		
V _{IL}	Lead to all all MINI	Nata O	2)/	V _{SS}		0.2×V _{CC}	.,
V _{IH}	Input levels at XIN	see Note 3	3 V	0.8×V _{CC}	,	V _{CC}	V

- NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2pF. The effective load capacitor for the crystal is (C_{XIN} × C_{XOUT}) / (C_{XIN} + C_{XOUT}). It is independent of XTS_FLL.
 - 2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines must be observed:
 - Keep as short a trace as possible between the 'F42xA and the crystal.
 - · Design a good ground plane around oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - · Avoid running PCB traces underneath or adjacent to XIN an XOUT pins.
 - · Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
 - Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.
 - 3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator.
 - 4. External capacitance is recommended for precision real-time clock applications, OSCCAPx = 0h.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

SD16, power supply and recommended operating conditions

	PARAMETER		TEST CONDITIONS	Vcc	MIN	TYP	MAX	UNIT
AV _{CC}	Analog supply voltage	AV _{CC} = DV _{CC} , AV _S	$_{S} = DV_{SS} = 0V$		2.7		3.6	٧
		SD16LP = 0.	GAIN: 1, 2	3 V		650	950	
	Analog supply	$f_{SD16} = 1 \text{ MHz},$	GAIN: 4, 8, 16	3 V		730	1100	
I _{SD16}	current: 1 active SD16 channel	SD16OSR = 256	GAIN: 32	3 V		1050	1550	μΑ
.3016	including internal	SD16LP = 1,	GAIN: 1	3 V		620	930	pu .
	reference	f _{SD16} = 0.5 MHz, SD16OSR = 256	GAIN: 32	3 V		700	1060	
	Analog front-end	SD16LP = 0 (Low p	power mode disabled)	3 V		1		MUL
f _{SD16}	input clock frequency	SD16LP = 1 (Low p	power mode enabled)	3 V		0.5		MHz

SD16, analog input range (see Note 1)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		SD16GAINx = 1, SD16REFON = 1			±500		
	Differential input	SD16GAINx = 2, SD16REFON = 1			±250		
.,	voltage range for	SD16GAINx = 4, SD16REFON = 1			±125		\/
V_{ID}	specified performance	SD16GAINx = 8, SD16REFON = 1			±62		mV
	(see Note 2)	SD16GAINx = 16, SD16REFON = 1			±31		
		SD16GAINx = 32, SD16REFON = 1			±15		
_	Input impedance	f _{SD16} = 1MHz, SD16GAINx = 1	3 V		200		l.o
Z _l	(one input pin to AV _{SS})	f _{SD16} = 1MHz, SD16GAINx = 32	3 V		75		kΩ
_	Differential input	f _{SD16} = 1MHz, SD16GAINx = 1	3 V	300	400		1.0
Z _{ID}	impedance (IN+ to IN-)	f _{SD16} = 1MHz, SD16GAINx = 32	3 V	100	150		kΩ
VI	Absolute input voltage range			AV _{SS} - 1.0V		AV_{CC}	٧
V _{IC}	Common-mode input voltage range			AV _{SS} - 1.0V		AV _{CC}	V

NOTES: 1. All parameters pertain to each SD16 channel.

The analog input range depends on the reference voltage applied to V_{REF}. If V_{REF} is sourced externally, the full-scale range is defined by V_{FSR+} = +(V_{REF}/2)/GAIN and V_{FSR-} = -(V_{REF}/2)/GAIN. The analog input range should not exceed 80% of V_{FSR+} or V_{FSR-}.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

SD16, analog performance (f_{SD16} = 1MHz, SD16OSRx = 256, SD16REFON = 1)

P/	ARAMETER	TEST CONDITIONS		V _{CC}	MIN	TYP	MAX	UNIT
		SD16GAINx = 1, Signal Amplitude = 500 mV		3 V	83.5	85		
		SD16GAINx = 2, Signal Amplitude = 250 mV		3 V	81.5	84		
SINAD	Signal-to-noise +	SD16GAINx = 4, Signal Amplitude = 125 mV	f _{IN =} 50Hz,	3 V	76	79.5		dB
SINAD	distortion ratio	SD16GAINx = 8, Signal Amplitude = 62 mV	100Hz	3 V	73	76.5		ав
		SD16GAINx = 16, Signal Amplitude = 31 mV		3 V	69	73		
		SD16GAINx = 32, Signal Amplitude = 15 mV		3 V	62	69		
		SD16GAINx = 1		3 V	0.97	1.00	1.02	
		SD16GAINx = 2		3 V	1.90	1.96	2.02	
		SD16GAINx = 4		3 V	3.76	3.86	3.96	
G	G Nominal gain	SD16GAINx = 8		3 V	7.36	7.62	7.84	
		SD16GAINx = 16		3 V	14.56	15.04	15.52	
		SD16GAINx = 32		3 V	27.20	28.35	29.76	
_	Office to sure	SD16GAINx = 1		3 V			±0.2	%FSR
E _{OS}	Offset error	SD16GAINx = 32		3 V			±1.5	%F5R
JC /JT	Offset error temperature	SD16GAINx = 1		3 V		±4	±20	ppm
dE _{OS} /dT	coefficient	SD16GAINx = 32		3 V		±20	±100	FSR/°C
OMBB	Common-mode	SD16GAINx = 1, Common-mode input signal: V _{ID} = 500 mV, f _{IN} = 50 Hz, 100 Hz		3 V		>90		ē
CMRR	rejection ratio	SD16GAINx = 32, Common-mode input signal V _{ID} = 16 mV, f _{IN} = 50 Hz, 100 Hz	l:	3 V		>75		dB
AC PSRR	AC power-supply rejection ratio	SD16GAINx = 1, V_{CC} = 3 V ± 100 mV, f_{VCC} =	50 Hz	3 V		>80		dB
X _T	Crosstalk			3 V		<-100		dB

SD16, built-in temperature sensor

PA	RAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
TC _{Sensor}	Sensor temperature coefficient			1.18	1.32	1.46	mV/K
V _{Offset,sensor}	Sensor offset voltage			-100		100	mV
		Temperature sensor voltage at T _A = 85°C	3 V	435	475	515	
V _{Sensor}	Sensor output voltage (see Note 2)	Temperature sensor voltage at T _A = 25°C	3 V	355	395	435	mV
	Voltage (See Note 2)	Temperature sensor voltage at T _A = 0°C	3 V	320	360	400	

NOTES: 1. The following formula can be used to calculate the temperature sensor output voltage: $V_{Sensor,typ} = TC_{Sensor} (273 + T [^{\circ}C]) + V_{Offset,sensor} [mV] \\ 2. \quad Results based on characterization and/or production test, not TC_{Sensor} or V_{Offset,sensor} \\ (273 + T [^{\circ}C]) + V_{Offset,sensor} [mV] \\ (273 + T [^{\circ}C]) + V_{$

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

SD16, built-in voltage reference

P/	ARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	UNIT
V _{REF}	Internal reference voltage	SD16REFON = 1, SD16VMIDON = 0	3 V	1.14	1.20	1.26	V
I _{REF}	Reference supply current	SD16REFON = 1, SD16VMIDON = 0	3 V		175	260	μΑ
тс	Temperature coefficient	SD16REFON = 1, SD16VMIDON = 0	3 V		20	50	ppm/K
C _{REF}	V _{REF} load capacitance	SD16REFON = 1, SD16VMIDON = 0 (see Note 1)			100		nF
I _{LOAD}	V _{REF} maximum load current	SD16REFON = 0	3 V			±200	nA
t _{ON}	Turn-on time	SD16REFON = $0 \rightarrow 1$, SD16VMIDON = 0 , $C_{REF} = 100 \text{ nF}$	3 V		5		ms
DC PSR	DC power supply rejection, $\Delta V_{REF}/\Delta V_{CC}$	SD16REFON = 1, SD16VMIDON = 0, V _{CC} = 2.5 V to 3.6 V			200		μV/V

NOTES: 1. There is no capacitance required on V_{REF}. However, a capacitance of at least 100nF is recommended to reduce any reference voltage noise.

SD16, built-in reference output buffer

P	ARAMETER	TEST CONDITIONS	v_{cc}	MIN	TYP	MAX	UNIT
V _{REF,BUF}	Reference buffer output voltage	SD16REFON = 1, SD16VMIDON = 1	3 V		1.2		٧
I _{REF,BUF}	Reference supply + reference output buffer quiescent current	SD16REFON = 1, SD16VMIDON = 1	3 V		385	600	μΑ
C _{REF(O)}	Required load capacitance on V _{REF}	SD16REFON = 1, SD16VMIDON = 1		470			nF
I _{LOAD,Max}	Maximum load current on V _{REF}	SD16REFON = 1, SD16VMIDON = 1	3 V			±1	mA
	Maximum voltage variation vs load current	I _{LOAD} = 0 to 1mA	3 V	-15		+15	mV
t _{ON}	Turn-on time	SD16REFON = $0 \rightarrow 1$, SD16VMIDON = 1, $C_{REF} = 470 \text{ nF}$	3 V		100		μs

SD16, external reference input

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
$V_{REF(I)}$	Input voltage range	SD16REFON = 0	3 V	1.0	1.25	1.5	V
I _{REF(I)}	Input current	SD16REFON = 0	3 V			50	nA

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

flash memory

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	NOM	MAX	UNIT
V _{CC(PGM/} ERASE)	Program and erase supply voltage			2.7		3.6	V
f _{FTG}	Flash timing generator frequency			257		476	kHz
I _{PGM}	Supply current from DV _{CC} during program		2.7 V/ 3.6 V		3	5	mA
I _{ERASE}	Supply current from DV _{CC} during erase		2.7 V/ 3.6 V		3	7	mA
t _{CPT}	Cumulative program time	see Note 1	2.7 V/ 3.6 V			10	ms
t _{CMErase}	Cumulative mass erase time	see Note 2	2.7 V/ 3.6 V	200			ms
	Program/erase endurance			10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	T _J = 25°C		100			years
t _{Word}	Word or byte program time				35		
t _{Block, 0}	Block program time for first byte or word	1			30		
t _{Block, 1-63}	Block program time for each additional byte or word]			21		
t _{Block, End}	Block program end-sequence wait time	see Note 3		6			t _{FTG}
t _{Mass Erase}	Mass erase time				5297		
t _{Seg Erase}	Segment erase time				4819		

- NOTES: 1. The cumulative programming time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes.
 - 2. The mass erase duration generated by the flash timing generator is at least 11.1 ms (= 5297x1/f_{FTG},max = 5297x1/476 kHz). To achieve the required cumulative mass erase time the flash controller's mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required).
 - 3. These values are hardwired into the flash controller's state machine ($t_{FTG} = 1/f_{FTG}$).

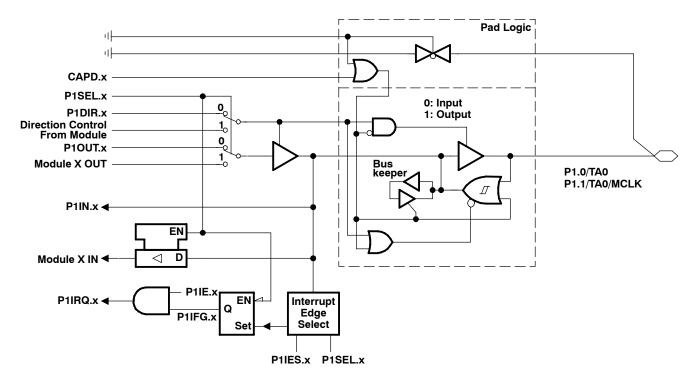
JTAG interface

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	NOM	MAX	UNIT
f _{TCK}	TOKE	and Malada	2.2 V	0		5	MHz
	TCK input frequency	see Note 1	3 V	0		10	MHz
R _{Internal}	Internal pullup resistance on TMS, TCK, TDI/TCLK	see Note 2	2.2 V/ 3 V	25	60	90	kΩ

NOTES: 1. f_{TCK} may be restricted to meet the timing requirements of the module selected.

2. TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions.

JTAG fuse (see Note 1)


	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	NOM	мах	UNIT
V _{CC(FB)}	Supply voltage during fuse-blow condition	T _A = 25°C		2.5			V
V_{FB}	Voltage level on TDI/TCLK for fuse-blow			6		7	V
I _{FB}	Supply current into TDI/TCLK during fuse-blow					100	mA
t _{FB}	Time to blow fuse					1	ms

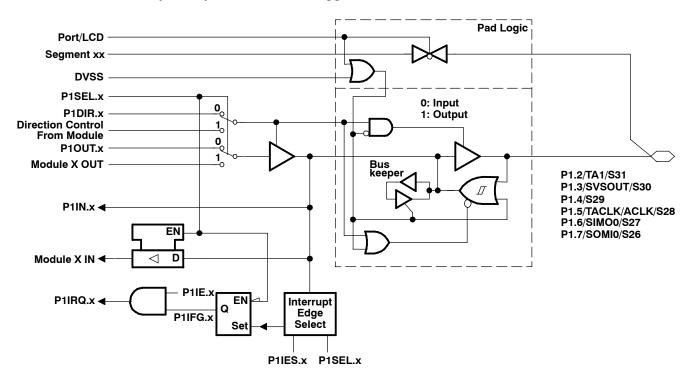
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode.

input/output schematic

Port P1, P1.0 to P1.1, input/output with Schmitt trigger

NOTE: $0 \le x \le 1$.

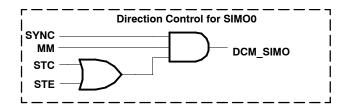
Port Function is Active if CAPD.x = 0

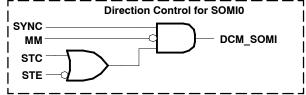

PnSEL.x	PnDIR.x	Direction Control From Module	PnOUT.x	Module X OUT	PnlN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x	CAPD.x
P1SEL.0	P1DIR.0	P1DIR.0	P1OUT.0	Out0 Sig.†	P1IN.0	CCI0A†	P1IE.0	P1IFG.0	P1IES.0	DVSS
P1SEL.1	P1DIR.1	P1DIR.1	P1OUT.1	MCLK	P1IN.1	CCI0B [†]	P1IE.1	P1IFG.1	P1IES.1	DVSS

[†] Timer_A3

input/output schematic (continued)

Port P1, P1.2 to P1.7, input/output with Schmitt trigger

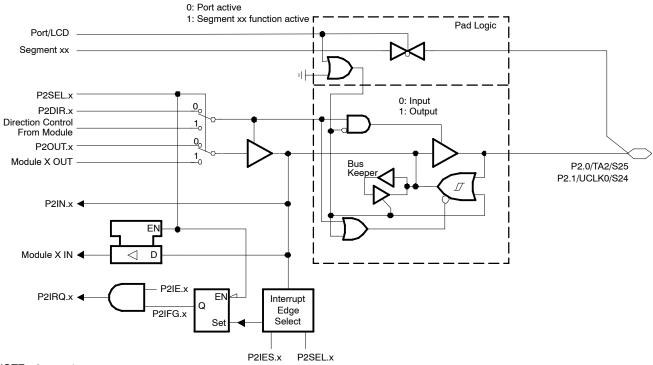



NOTE: $2 \le x \le 7$. Port Function is Active if Port/LCD = 0

PnSEL.x	PnDIR.x	Direction Control From Module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x	Port/LCD	Segment
P1SEL.2	P1DIR.2	P1DIR.2	P1OUT.2	Out1 Sig.†	P1IN.2	CCI1A [†]	P1IE.2	P1IFG.2	P1IES.2		S31
P1SEL.3	P1DIR.3	P1DIR.3	P1OUT.3	SVSOUT	P1IN.3	unused	P1IE.3	P1IFG.3	P1IES.3	0: LCDM < 0E0h 1: LCDM ≥ 0E0h	S30
P1SEL.4	P1DIR.4	P1DIR.4	P1OUT.4	DVSS	P1IN.4	unused	P1IE.4	P1IFG.4	P1IES.4		S29
P1SEL.5	P1DIR.5	P1DIR.5	P1OUT.5	ACLK	P1IN.5	TACLK [†]	P1IE.5	P1IFG.5	P1IES.5		S28
P1SEL.6	P1DIR.6	DCM_SIMO	P1OUT.6	SIMO0(o) [‡]	P1IN.6	SIMO0(i)‡	P1IE.6	P1IFG.6	P1IES.6	0: LCDM < 0C0h	S27
P1SEL.7	P1DIR.7	DCM_SOMI	P1OUT.7	SOMI0(o) [‡]	P1IN.7	SOMI0(i) [‡]	P1IE.7	P1IFG.7	P1IES.7	1: LCDM ≥ 0C0h	S26

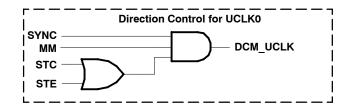
[†] Timer A3

[‡] USART0



input/output schematic (continued)

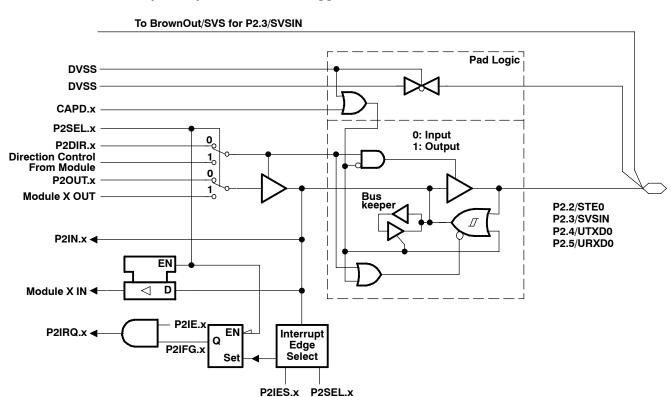
Port P2, P2.0 to P2.1, input/output with Schmitt trigger



NOTE: $0 \le x \le 1$.

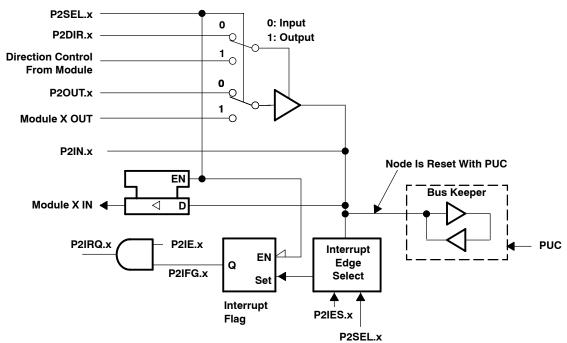
Port Function is Active if Port/LCD = 0

PnSel.x	PnDIR.x	Dir. Control from module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x	Port/LCD	Segment
P2Sel.0	P2DIR.0	P2DIR.0	P2OUT.0	Out2sig. [†]	P2IN.0	CCI2A †	P2IE.0	P2IFG.0	P2IES.0	0: LCDM < 0E0h	S25
P2Sel.1	P2DIR.1	DCM_UCLK	P2OUT.1	UCLK0(o) [‡]	P2IN.1	UCLK0(i) [‡]	P2IE.1	P2IFG.1	P2IES.1	1: LCDM ≥ 0E0h	S24


[†] Timer_A3 ‡ USART0

input/output schematic (continued)

Port P2, P2.2 to P2.5, input/output with Schmitt trigger


NOTE: $2 \le x \le 5$ Port function is active if CAPD.x = 0

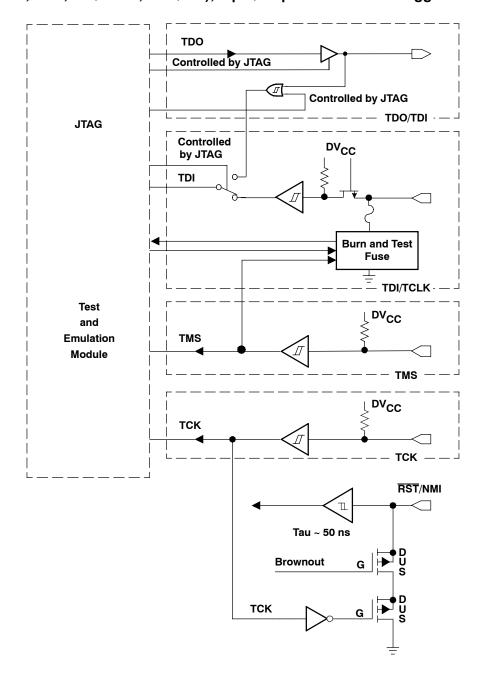
PnSEL.x	PnDIR.x	Direction Control From Module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x	CAPD.x
P2SEL.2	P2DIR.2	DVSS	P2OUT.2	DVSS	P2IN.2	STE0 [†]	P2IE.2	P2IFG.2	P2IES.2	DVSS
P2SEL.3	P2DIR.3	P2DIR.3	P2OUT.3	DVSS	P2IN.3	unused	P2IE.3	P2IFG.3	P2IES.3	SVSCTL VLD = 1111b
P2SEL.4	P2DIR.4	DVCC	P2OUT.4	UTXD0 [†]	P2IN.4	unused	P2IE.4	P2IFG.4	P2IES.4	DVSS
P2SEL.5	P2DIR.5	DVSS	P2OUT.5	DVSS	P2IN.5	URXD0 [†]	P2IE.5	P2IFG.5	P2IES.5	DVSS

[†] USART0

input/output schematic (continued)

Port P2, unbonded GPIOs P2.6 and P2.7

NOTE: x = Bit/identifier, 6 to 7 for port P2 without external pins


P2Sel.x	P2DIR.x	DIRECTION CONTROL FROM MODULE	P2OUT.x	MODULE X OUT	P2IN.x	MODULE X IN	P2IE.x	P2IFG.x	P2IES.x
P2Sel.6	P2DIR.6	P2DIR.6	P2OUT.6	DV _{SS}	P2IN.6	unused	P2IE.6	P2IFG.6	P2IES.6
P2Sel.7	P2DIR.7	P2DIR.7	P2OUT.7	DV _{SS}	P2IN.7	unused	P2IE.7	P2IFG.7	P2IES.7

NOTE: Unbonded GPIOs 6 and 7 of port P2 can be used as interrupt flags. Only software can affect the interrupt flags. They work as software interrupts.

APPLICATION INFORMATION

JTAG pins (TMS, TCK, TDI/TCLK, TDO/TDI), input/output with Schmitt trigger or output

APPLICATION INFORMATION

JTAG fuse check mode

MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, I_{TF}, of 1.8 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.

The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 14). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition).

The JTAG pins are terminated internally, and therefore do not require external termination.

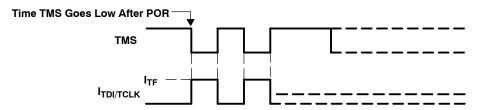


Figure 14. Fuse Check Mode Current, MSP430F42xA

MSP430F42xA MIXED SIGNAL MICROCONTROLLER

SLAS587 - FEBRUARY 2008

Data Sheet Revision History

Literature Number	Summary
SLAS587	Production data sheet release

NOTE: Page and figure numbers refer to the respective document revision.

Corrections to MSP430F42xA Data Sheet (SLAS587)

Document Being Updated: MSP430F42xA Mixed Signal Microcontroller

Literature Number Being Updated: SLAS587

Page Change or Add

- 17 Add ESD Ratings table as shown in Table 1
- In the table for "Port P1, P1.2 to P1.7, input/output with Schmitt trigger": Port/LCD (the column heading) should be changed to Port/LCD.
 0: LCDM < 0E0h, 1: LCDM ≥ 0E0h should be changed to 0: LCDPx < 05h, 1: LCDPx ≥ 05h.
 0: LCDM < 0C0h, 1: LCDM ≥ 0C0h should be changed to 0: LCDPx < 04h, 1: LCDPx ≥ 04h.
- In the table for "Port P2, P2.0 to P2.1, input/output with Schmitt trigger":

 Port/LCD (the column heading) should be changed to Port/LCD.

 0: LCDM < 0C0h, 1: LCDM ≥ 0C0h should be changed to 0: LCDPx < 04h, 1: LCDPx ≥ 04h.

Table 1. ESD Ratings

			VALUE	UNIT
\/	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±250	v

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

Revision History www.ti.com

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from November 1, 2013 to February 6, 2018						
•	Added entry for page 17					

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
MSP430F423AIPM	ACTIVE	LQFP	PM	64	160	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F423A	Samples
MSP430F423AIPMR	ACTIVE	LQFP	PM	64	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F423A	Samples
MSP430F425AIPM	ACTIVE	LQFP	PM	64	160	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F425A	Samples
MSP430F425AIPMR	ACTIVE	LQFP	PM	64	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F425A	Samples
MSP430F427AIPM	ACTIVE	LQFP	PM	64	160	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F427A	Samples
MSP430F427AIPMR	ACTIVE	LQFP	PM	64	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F427A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

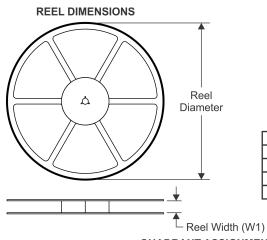
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

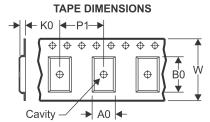
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

PACKAGE OPTION ADDENDUM

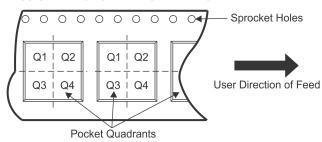
11-Apr-2013


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

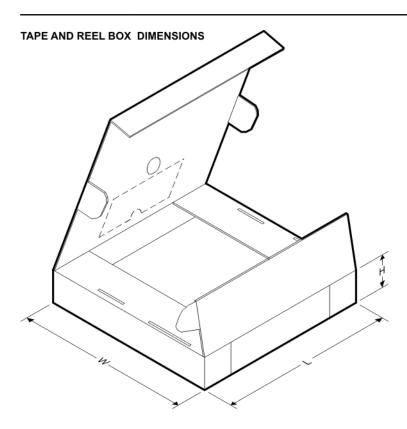

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Feb-2015


TAPE AND REEL INFORMATION

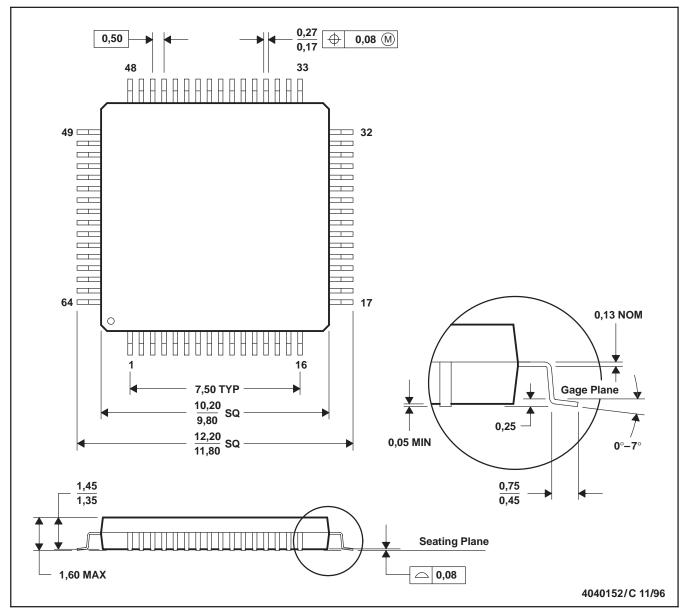
Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F423AIPMR	LQFP	PM	64	1000	330.0	24.4	13.0	13.0	2.1	16.0	24.0	Q2
MSP430F425AIPMR	LQFP	PM	64	1000	330.0	24.4	13.0	13.0	2.1	16.0	24.0	Q2
MSP430F427AIPMR	LQFP	PM	64	1000	330.0	24.4	13.0	13.0	2.1	16.0	24.0	Q2

www.ti.com 18-Feb-2015

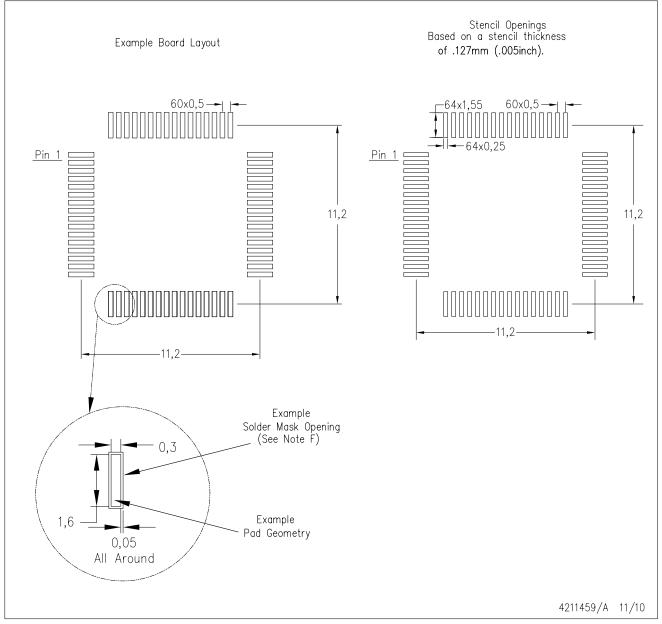

*All dimensions are nominal

7 til dilitioriolorio aro mominar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F423AIPMR	LQFP	PM	64	1000	336.6	336.6	41.3
MSP430F425AIPMR	LQFP	PM	64	1000	336.6	336.6	41.3
MSP430F427AIPMR	LQFP	PM	64	1000	336.6	336.6	41.3

PM (S-PQFP-G64)

PLASTIC QUAD FLATPACK

1



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026
- D. May also be thermally enhanced plastic with leads connected to the die pads.

PM (S-PQFP-G64)

PLASTIC QUAD FLATPACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- D. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.